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EXECUTIVE SUMMARY 

Project Purpose 

The need for testing and improving GIS-based slope stability models, for use in forest 

management and forest-practices regulations, has been identified by the Timber/Fish/Wildlife 

(T/FIW) Cooperative Monitoring, Evaluation, and Research (CMER) Committee and the newly 

released Forests and Fish Report to the Washington Forest Practices Board (WFPB) and the 

Governor's Salmon Recovery Office (USDI Fish and Wildlife Service et al., 1999). The original 

T/F/W agreement (1987, p. 31) called for" ... moving toward a hazard zonation mapping system 

to better identify areas of instability", and efforts began soon thereafter to design mapping 

systems, both manual and GIS-based, for screening shallow landslides. Likewise, the Forests 

and Fish Report has called for "a project to identify the best available tope/geographic model to 

flag landforms that have significant potential to initiate shallow rapid landslides" (p. 37), in 

anticipation of the completion of the study described herein. 

Over the past eight years, CMER has funded or partially funded research to develop 

GIS-based models. These models, however, have not been tested rigorously or adapted for 

statewide application to management and regulation of commercial forest lands in Washington. 

Consequently, the CMER Committee recommended, and the T/F/W Policy Committee 

approved, Project 10 ("Erosion Effects from Forest Practices") for the 1997-99 biennium, the 

primary intents of which were to: 

(1) evaluate the performance of GIS-based slope-stability models that are readily available and 

have been developed with support from T/F/W and its cooperators; 

(2) select one or more models that meet stated criteria for scientific accuracy, technical 

accessibility, and applicability to forest management and regulation in Washington; and, 

(3) further refine the selected model(s) and make recommendations to the T/F/W community 
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regarding its/their use as a screening tool, particularly where regulatory watershed 

analyses or landslide inventories have not been completed. 

Model implementation would be promoted by making software and documentation available to 

all T/F/W cooperators, or by creating a publicly accessed, regional landslide screen to replace 

the current WDNR-GIS slope-stability layer. 

In May 1998, we contracted with the CMER Committee and the Washington Forest 

Protection Association (WFPA) to carry out Project 10. This technical report and accompanying 

recommendations describe the methods, results, and conclusions of our year-long analysis. 

We thank the T/F/W group, WFPA, and Washington Department of Natural Resources (WDNR) 

for their generous support of this project. 

During the course of this study, our focus expanded from evaluating models for use in 

regulatory watershed analyses and routine forest management, to include an assessment of 

their potential as statewide landslide-screening tools. This shift was driven primarily by the 

Forestry Module negotiations and the resulting commitments of the Forests and Fish Report to 

promote the development of a statewide screen. Hence, we provide recommendations for 

model use at the local and regional scales. This project has focused on western Washington, 

due primarily to time constraints. Consequently, we are developing a similar test for 

watersheds in each of the distinct geomorphic provinces in eastern Washington, as groundwork 

for creating a statewide screen of shallow landsliding. This test should help determine whether 

any of these GIS-based models can accommodate the geology and climatic regimes east of the 

Cascades Range. 

Summary of Study Methods and Report Conclusions 

We evaluated three shallow-landslide predictive methods that have been used 
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previously in Washington forest management and regulation: the current WDNR-GIS slope­

stability screen (referred to in this report as the SOILS screen; tested at the request of CMER 

Committee members); the SMORPH or DNR-SL model (Shaw and Johnson, 1995); and the 

SHALSTAB model (Montgomery and Dietrich, 1994). We originally proposed to test the WHPM 

model (Wu and Abdei-Latif, 1995, 1997); however, this model has not been fully developed and 

programmed by the authors and, hence, was unavailable during the course of this study. Other 

published models (e.g., Wu and Sidle, 1995; Packet al., 1998) also were not t.ested fully due to 

availability and software-development issues. 

We tested the three selected models in eight watersheds (i.e., nine Watershed 

Administrative Units (WAUs) and portions of four others), representing the major geomorphic 

provinces of western Washington (see Figure 1 in the Technical Report) and incorporating 2524 

known, existing shallow landslides. The test was conducted by executing the model programs, 

creating GIS covers from model results, comparing them statistically with landslide inventories 

and hazard-zonation maps produced for this project or as products of regulatory watershed 

analyses, and verifying model predictive accuracy in the field. 

For maximum test accuracy, we found that we had to verify and update most of the 

landslide inventories in the field, and make corrections or additions to the digital databases (i.e., 

we encountered problems with the watershed-analysis GIS products). We also modified the 

SHALSTAB program, with assistance from one of the authors and staff, such that it functioned 

correctly on the WDNR UNIX computer system. In addition, we needed to create a method for 

converting SHALSTAB model output, given as critical rainfall amounts necessary to initiate 

landslides (in mm/day), to management criteria (i.e., low, moderate, and high "hazard" 

potentials) in order to compare the model results with those of the SOILS screen and SMORPH 

model. The latter two models yield results in terms of management criteria, as defined by 
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WFPB regulations. While conducting this study, we developed some additional 

documentation and computer help tools that will improve the "user-friendliness" of the SMORPH 

and SHALSTAB models. This documentation, as well as the algorithm for converting 

SHALSTAB output, are available by obtaining copies of the computer programs from the 

WDNR. 

Based on statistical comparisons of model results and existing landslide data, we have 

concluded the following regarding the management applicability of these models: 

(1) The SMORPH model generated spatial predictions of shallow landslides that correlated 

most closely with the pattern of known, existing landslides (i.e., landslide inventory 

databases) and the landslide hazard-potential maps (e.g., Mass-Wasting Map Unit 

maps from regulatory watershed analysis). This model correctly predicted 97% of the 

total existing landslides, compared with 92% for the SHALSTAB model and 68% for the 

SOILS screen. Compared with the landslide hazard-potential maps, the SHALSTAB 

model over-predicted by an average 7% the area considered to be "high hazard", 

whereas the SMORPH model similarly over-predicted by an average 3%. The 

SMORPH model also performed substantially better than the other models in the least 

appropriate terrain for GIS-based model applications (i.e., continental glaciated basins). 

(2) Using the landslide databases as a measure, the difference in predictive capability of the 

SMORPH and SHALSTAB models appears to be marginally significant statistically, 

whereas the difference between either of these models and the SOILS screen is very 

significant. Hence, SMORPH and SHALSTAB agree fairly well with observed landslide 

distributions and either conceivably could be developed to produce a regional or 

statewide GIS cover of shallow landslide potential, contingent on their calibration needs. 

(3) The SHALSTAB model is less readily applicable in the current management decision-
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making framework because it contains no mechanism for converting model output to 

management criteria (i.e., low, moderate, high "hazard" potential). Hence, using this 

model in a watershed-analysis or regulatory context (e.g., creating a statewide cover) 

would require that the model authors create an algorithm or verify that the one we 

created is acceptable. Our conversion algorithm was designed to yield the most 

conservative estimate of slope instability and reproduce most closely the spatial 

distribution of existing landslides, so we believe that it is a viable approach to solving 

this application problem. We estimate that it would take the model authors at least three 

months of concerted effort to make these and other desirable model modifications (e.g., 

addressing model calibration issues on a statewide level). 

(4) The SOILS screen is the least preferable option for management applications because of its 

comparative inaccuracy, the inability of the user to calibrate model input variables to 

site-specific physical conditions, and the large gaps in geographic coverage due to lack 

of comprehensive, digital soils-survey data. The SOILS screen is relatively more "user­

friendly" than the other models because it is delivered to the user as a pre-compiled GIS 

cover. Contingent on further testing in eastern Washington, either SHALSTAB or 

SMORPH programs could be executed to yield a statewide cover that would alleviate 

the need for individual users to run the model.· A new cover could be made available in 

the public domain by the WDNR. 

(5) The SHALSTAB model contains more input variables than SMORPH and, consequently, 

has the potential for producing relatively more model errors associated with using input 

values that are unrepresentative of the study area. The soil-property and hydrology 

input variables are assigned constant values in the model. Few published methods exist 

for determining appropriate constant values for soil properties that can vary considerably 
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in space and time. Collecting sufficient data in the field also can be problematic. 

Reasonable values potentially can be back-calculated by running the model with a range 

of possible values and choosing ones that yield landslide predictions most comparable 

with existing landslide databases. This approach might be less labor-intensive than field 

sampling but requires reliable landslide inventories in a sufficient number of 

representative watersheds that the calibrated values can be extrapolated to basins 

without inventories. This calibration might hinder the speedy development of a 

statewide GIS cover and could inhibit the use of this model in watersheds with no viable 

analogs (e.g., geomorphically similar watersheds with completed inventories). 

(6) The SMORPH model contains relatively fewer input variables (i.e., management criteria for 

different combinations of hillslope gradient and curvature), relying on the assumption 

that topographic factors primarily drive landslide initiation. Gradient threshold values 

corresponding to each criterion (i.e., low, moderate, high "hazard") are set using existing 

landslide inventories and/or hazard-zonation maps from geomorphically similar 

watersheds. Hence, this model also requires calibration and suffers correspondingly 

when no viable analogs exist. We found that the SMORPH model is relatively less 

sensitive to variations in the gradient thresholds than SHALSTAB is to variations in soil­

property values (i.e., magnitudes of the estimated soil cohesion and internal friction 

angles). As a result, SMORPH likely can accommodate somewhat greater error in the 

choice of input values than SHALSTAB. In addition, gradient data are more readily 

accessible than soil-property information; the former can be derived from landslide 

inventories and topographic or DEM maps, whereas the latter are obtained from field 

measurements or from soil surveys and geoengineering literature. 

(7) The SMORPH model, in its present form, cannot be adjusted to include site-specific soils 
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and hydrology data. Hence. the model might not function as well in regions where 

topographic factors are secondary to other hillslope processes. The same is true of 

SHALSTAB in its present form because it also assumes topographic forcing of 

·landslides. Alternatively, the SHALSTAB model contains placeholders for algorithms 

that treat variability of soil properties (i.e .• substituting computational routines for the 

constants) and. hence, eventually could prove to be more robust and versatile when 

such algorithms are added. With respect to western Washington. the comparatively 

better predictive capability of the SMORPH model suggests that including algorithms for 

soil and hydrologic factors might not be as critical as modeling the fine-scale variations 

in topography. This result also implies that. for western Washington, the values of input 

variables required in the SHALSTAB model might be adequately represented by default 

values currently set in the computer program. 

(8) The SMORPH model runs approximately 80% faster than SHALSTAB on a computer 

workstation (e.g., WDNR UNIX system). which might be important to managers with 

limited computer resources and large data requirements. SMORPH also requires about 

five times less data-storage volume than SHALSTAB and several times less storage 

volume than the existing SOILS screen. 

(9) The SHALSTAB model requires relatively more training to instruct users on executing model 

programs and interpreting results. The assistance of technical specialists also might be 

needed more frequently than with other models, to calibrate input variables and interpret 

model results. particularly if no uniform method exists for converting model output to 

management criteria. 

(10) Both SHALSTAB and SMORPH perform significantly better using 10-m. versus 30-m. 

resolution OEM data. Hence. the finer-resolution data should be used wherever 
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possible. Computer programs for both models can be run using default values of the 

input variables, if time and/or budget precludes more lengthy calibration efforts, although 

the model results vary accordingly. 

Recommendations for Model Adoption as a Landslide Screening Tool 

Based on the conclusions presented in this summary and the technical report, we offer 

the following options for selecting a preferred model as a screening tool for shallow landslides. 

As summarized previously, the SOILS screen was determined to be the least preferable based 

on its predictive capability and, hence, is not offered here as an option. These 

recommendations are the same regardless of whether the model is employed at a watershed 

scale (e.g., for forest-practices-application reviews, timber-harvest planning, and preliminary 

hazard-zonation mapping) or at a regional scale (e.g., for creating a statewide or regional GIS 

cover). 

OPTION 1: Choose the SMORPH model as the preferred screening tool. 

The advantages of this option are that the SMORPH model performs slightly better than 

the current version of the SHALSTAB model and yields results that are consistent with 

observed landslide data. Its output is given in terms of management criteria (i.e., low, 

moderate, and high "hazard" potential) that are commensurate with the regulatory 

definitions and management decision-making process. SMORPH requires relatively 

less calibration, with readily available input data. This model could be incorporated with 

other model algorithms that address additional key factors known to influence 

landsliding (e.g., soil properties). The program runs substantially faster, requires less 

storage space, and can be implemented with less training and technical assistance. 
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This model has been used by a variety of private, state, and federal entitie.s in the 

Pacific Northwest to create preliminary screens of landslide potential. It can be readily 

implemented, although additional testing should be conducted in eastern Washington to 

assure that it performs accurately in terrain less comparable to watersheds analyzed on 

the west side. We estimate that a statewide GIS cover could be developed within a few 

months in western Washington and in about nine months for eastern Washington. 

OPTION 2: Choose the SHALSTAB model as the preferred screening tool. 

The advantages of this option are that the SHALSTAB model performs nearly as well as 

the SMORPH model and yields results that are consistent with observed landslide 

inventories, if our algorithm is used to convert output data to management criteria. This 

model potentially offers more versatility in terrains where topographic controls are 

confounded by spatial and temporal variations in soil and hydrologic variables, although 

algorithms to address such variability have not been made available. The SHALSTAB 

model could be adapted for management and regulatory use if the output conversion 

algorithm used in this study were refined, replaced, or corroborated by the model 

authors. Whereas using the model in the current regulatory arena would require 

establishing management criteria, its use by analysts in watershed analysis would not 

necessarily depend on these criteria, given that the standard output (i.e., critical rainfall 

values) can be interpreted by scientific specialists. We expect that model modifications 

(e.g., refining management criteria) would take a number of months and potentially 

require funding of the authors to complete. The model requires a fair amount of 

calibrating with existing landslide databases or soil and precipitation data. This test, 

however, suggests that using the default values of the input variables is reasonable for 
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western Washington terrains similar to those tested in this study. Although the model 

program is relatively less time- and storage- efficient, it nevertheless could be run, 

perhaps in a series of smaller geographic areas, to create a regional or statewide cover. 

This model requires relatively more training and assistance from technical specialists, 

especially in calibrating input variables and interpreting results. The SHALSTAB model 

or its variations have been used by several private, federal, and academic entities to 

produce GIS covers of landslide potential in its native units of measure (i.e., to our 

knowledge, no uniform method exists for interpreting results in a management context). 

It could be used to build a statewide GIS cover, pending refinement of management 

criteria and further testing in eastern Washington. We estimate that it might take about 

one year to develop a statewide cover, using the management criteria presented in this 

study, and potentially longer if other criteria need to be developed. Model modifications 

would be subject to funding and availability of the model authors, which could influence 

the completion of a statewide cover by December 2000 (i.e., anticipated deadline for 

implementation of the Forests and Fish Report). 

OPTION 3: Choose the SMORPH model as an interim tool while the SHALSTAB model is 

being further developed and tested. 

This option accommodates the needs of implementing a reliable statewide GIS cover by 

December 2000, while allowing for further development and testing of the SHALSTAB 

model. The SHALSTAB model is more sophisticated, although in its current version 

(i.e., with variables held constant), it is reduced to its most essential element (i.e., a 

topographic analysis). Hence, there currently is little functional difference between the 

current SMORPH and SHALSTAB models. This option basically takes care of the 
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present needs while exploring potential advantages of a more complex model. The 

disadvantage of this option would be the time and money spent developing two GIS 

coverages. Switching from one model to the other in mid-stream, however, would not 

necessarily affect users because one coverage could be substituted for another, as long 

as the management criteria were defined similarly. 

OPTION 4: Choose the SMORPH model as an interim tool while other promising models are 

being refined. 

This option is similar to Option 3, although SHALSTAB would be replaced in favor of one 

of several other promising, GIS-based models. The advantages of these models are 

summarized in the Technical Report. One such method, currently being developed and 

tested by the USDA Forest Service and its cooperators in Oregon, couples a variation of 

the SHALSTAB model with a debris-flow-runout algorithm, to assess not only the spatial 

distribution of predicted shallow landslides but the "deliverability" of landslide materials 

to downstream areas with sensitive public resources (D. Miller, Earth Systems Institute, 

pers. comm.). Hence, this option considers the possibility that more advanced tools 

would be available in the near future. 

We have been asked by members of the CMER Committee to recommend a preferred 

option. We have selected Option 1. The deciding factors for us were the slightly greater 

predictive capability of SMORPH, despite the conceptual simplicity of the model, and the 

immediate accessibility of the operating program to users with a basic knowledge of GIS and 

mass-wasting mapping techniques (i.e., it does not require any modifications to be 

implemented). In addition, this model contains fewer variables that need to be calibrated for the 
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watershed of interest, it runs faster, and it yields output in terms of decision-making criteria that 

currently are being used in the Washington forest-management arena. 

We recognize, however, that a GIS screen built with one model could be replaced 

relatively easily with another, as science and technology advance and better methods are 

developed (i.e., "adaptive management" in the GIS world). Hence, Option 3 runs a close 

second, in our estimation. We strongly support the concept of making both models available 

and implementable, given that each offers some important potential advantages. 

Regardless of which model is chosen, we recommend that both SMORPH and 

SHALSTAB be simultaneously tested and refined for use in eastern Washington, prior to 

implementing a statewide GIS cover. The possibility exists that one model could perform 

significantly better than the other in certain types of terrain. To our knowledge, neither model 

has been analyzed in terms of its applicability to eastern Washington watersheds. Testing both 

models simultaneously would not cause delay in creating a statewide coverage because the 

requisite diagnostic test methods have been established as part of this project. 
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. TECHNICAL REPORT 

Comparison of GIS-based Models of Shallow Landsliding for Application to Watershed 
Management 

1. 0 Introduction 

Susan C. Shaw and Laura M. Vaugeois 
Washington Department of Natural Resources 

Forest Practices Division 
P.O. Box 47012 

Olympia, WA. 98504-7012 

Land managers and regulators in the Pacific Northwest historically have possessed 

limited means for evaluating landslide potential where land-management activities are 

proposed. Existing information on site characteristics and failure potential typically has been 

confined to small geographic areas (e.g., 20 km2 or less) in which landslide inventories, 

geomorphic research, or semi-empirical stability analyses have been conducted. More 

recently, private landowners and natural-resource agencies in Washington State have initiated 

a regulatory form of watershed analysis (Washington Forest Practices Board, 1995) for specific 

landscape units (i.e., Watershed Administrative Units (WAUs), usually less than 200 km2 or 78 

mi2 in size), in which landslide inventories are developed largely with the aid of aerial 

photographs and limited field reconnaissance. Landslide assessments in only about 60 of the 

764 Watershed Administrative Units, however, have been finalized and approved by the state 

during the last seven years (Washington Department of Natural Resources (WDNR), 1999). 

Furthermore, incomplete and often imprecisely mapped state soil surveys and their slope-failure 

ratings still constitute the main source of information used by state regulatory foresters to 

evaluate management proposals in areas outside of those where reliable landslide 
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assessments have been performed. 

In recognition of these and other management needs for improved methods of 

identifying landslide sites in Washington State, the Washington Forest Practices Board (WFPB) 

and Governor's Salmon Recovery Office recently adopted new measures for forest­

management activities that include the use of a GIS (Geographic Information System) -based 

topographic model as a statewide screen for predicting potential unstable slopes (USDI Fish 

and Wildlife Service et al., 1999). GIS-driven models, using digital elevation model (OEM) data, 

typically combine empirical and theoretical methods for evaluating the relative role of 

topographic control (e.g., gradient and slope form) on initiating shallow landslides (e.g., 

Montgomery and Dietrich, 1994; Shaw and Johnson, 1995; Wu and Sidle, 1995; Wu and Abdei­

Latif, 1997; Packet al. 1998; D. Miller, Earth Systems Institute, pers. comm.). Depending on 

the model used, output can vary from spatial distributions of steady-state rainfall predicted to 

cause slope instability (e.g., Montgomery and Dietrich, 1994}, to landslide-hazard potential 

based on factors of safety (e.g., Wu and Abdei-Latif, 1997), to landslide-hazard rankings based 

on management criteria defined by the WFPB (e.g., Shaw and Johnson, 1995). These maps 

can be useful to managers for screening potential landslide areas and determining where land­

use or habitat-restoration activities should be concentrated, to regulators as a replacement to 

the soil surveys for assigning forest-practices class designations (i.e., determining whether 

environmental checklists or impact statements are required), and to analysts for developing 

preliminary hazard-zonation maps that reflect initial hypotheses regarding the location and 

density of shallow landslides. Isolated tests of GIS-based models in the Pacific Northwest have 

suggested that preliminary landslide-failure or hazard-zonations maps can provide more 

accurate slope-stability information than customarily can be interpreted from topographic, 

geologic, or soil maps alone (e.g., Shaw and Johnson, 1995; Montgomery et al., 1998). 
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In this paper, we present the results of a comparative test of GIS-based models of 

shallow landsliding for use in a management context. This test was conducted under contract 

to the Washington Timber/Fish/Wildlife (T/F/W) Program (i.e., a cooperative group of 

regulatory, tribal, environmental, and industrial sponsors who collectively makes 

recommendations to the WFPB on matters related to forest management; T/F/W, 1992) and 

Washington Forest Protection Association (WFPA), as a precursor to developing the statewide 

slope-stability screen required by the WFPB. For the purposes of comparison, we use data on 

existing and potential shallow landslide sites from eight watersheds in western Washington (i.e., 

west of the Cascades Range crest) to examine the ability of each model to predict the spatial 

distribution of shallow landslides. A similar test currently is being developed for watersheds in 

each of the distinct geomorphic provinces in eastern Washington, as groundwork for creating a 

statewide screen of shallow landsliding. In addition to evaluating method accuracy and 

limitations, we discuss management applicability and several technical criteria important in 

making models accessible to natural-resource managers and technicians. 

2.0 Description of Test Models 

Three GIS-driven models have been selected for this evaluation, based on their current 

availability, potential for adaptation to management decision-making, and/or use by T/F/W 

cooperators in field applications or previous tests of model performance. They are the current 

statewide soil-stability screen, maintained by the WDNR and herein labeled SOILS; the shallow 

landslide model of Montgomery and Dietrich (1994), nicknamed SHALSTAB by its authors; and 

the shallow landslide model of Shaw and Johnson (1995), herein referred to as SMORPH. 

The three selected models have a number of elements in common. They use 

geographic information systems (GIS) to couple OEM data with assumptions regarding 
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topographic attributes that influence slope destabilization and with algorithms for calculating 

slope stability. Whereas the SHALSTAB and SMORPH models assume that topographic relief 

(i.e., hillslope gradient) and form (i.e., slope curvature) are the principal driving factors in 

promoting shallow landslides, the SOILS screen assumes that only gradient is a critical 

variable. These assumptions derive from previous studies suggesting that shallow landslides 

occur most often above a threshold gradient and in topographic convergences where shallow 

subsurface flow concentrates, such as hollows and channelized depressions, with consequent 

effects on soil moisture and strength (e.g., Dietrich and Dunne, 1978; Swanson et al., 1981; 

Swanson and Fredriksen, 1982; Sidle et al., 1985; Montgomery and Dietrich, 1994). This 

simplifying assumption permits a number of key slope-stability factors to be treated implicitly, 

including substrate type, bedrock structure, rainfall duration and intensity, soil depth, soil 

conductivity and strength, plant transpiration, root strength, and subsurface drainage properties. 

In addition, each model is limited similarly by the accuracy of the DEM data; that is, 

these models are only as good as the DEMs on which they are based. Much of western 

Washington is mapped with DEMs at a 10-meter resolution. For regions in which DEMs are 

available only on a 30-meter grid, however, all models suffer correspondingly in their precision 

and accuracy, as discussed in section 3.2 of this paper. 

The three model differ primarily in the sophistication with which independent physical 

parameters affecting slope stability are addressed. The SOILS screen relies on hillslope 

gradient and soil type to rate slope-stability potential (WDNR, 1988). The SMORPH model 

explicitly treats gradient and slope curvature, while the SHALSTAB model treats these 

topographic attributes as well as several key soil physical and hydrological properties. From 

the standpoint of practical application, there are advantages and disadvantages to each 
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approach. Simpler models in which key influencing· factors are treated implicitly can be 

employed readily (i.e., with little to no data collection) and for larger geographic areas. The 

level of site-specific accuracy, however, might be reduced by assuming static or invariant 

hydrologic and geomorphic conditions, and by extrapolating local data on soil and hydrologic 

properties to the basin or regional scale. The advantage of explicitly treating parameters such 

as rainfall, subsurface hydrology, and soil properties is that the model might identify patterns of 

potentially unstable ground at a higher resolution. Consequently, such models are useful for 

predicting site conditions in the local area for which the input data apply. Conversely, 

employing local data might limit the ability of the model to predict accurately the spatial 

distribution of unstable slopes at a landscape scale. This approach also requires considerably 

more data collection in the field. Some factors, for example subsurface hydrologic and soil 

strength properties, might be very difficult to analyze and measure due to their spatial and 

temporal variations and their complex physical interactions. 

The following paper sections summarize the salient features of the three test methods, 

in order of relative sophistication, and current knowledge of the authors regarding their 

application to forest management. 

2.1 SOILS screen 

This GIS cover, created by WNDR staff in 1988, expresses for each OEM cell, the 

relative potential for slope destabilization (i.e., low, medium, high, very high potential for shallow 

landsliding). It is based on the state soil survey classifications of soil type as stable, unstable, 

or very unstable (WDNR, 1984) and differentiation between steeper slopes (30% to 65%) and 

less steep slopes (less than 30%). For example, soil mapping units are rated as having low 

potential if they are classed as stable soils and fall on hillslopes with maximum gradients of 
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30%. Soil mapping units are assigned a very high mass-wasting potential if they are Classed as 

unstable soils and fall on hillslopes greater than 65% (Table 1). 

The SOl LS screen was built as a GIS cover for Washington State in 1988 and has been 

used since that time in a variety of management contexts, including timber harvest planning by 

private landowners and state-land managers. The SOILS screen remains the primary database 

used by state regulators in evaluating the slope-stability potential of areas for which forest 

practices have been proposed. It is available in the public domain on the WDNR-GIS system. 

2.2 SMORPH model 

The SMORPH model outputs, for each DEM cell, the relative potential for shallow 

landsliding in terms of hazard ratings of low, moderate, and high (Shaw and Johnson, 1995). 

This model assumes that hills lope gradient and form are the primary driving factors for shallow 

landslides and that other critical influencing factors are treated implicitly by calibrating the model 

with observed landslide densities. For example, it assumes that the greatest density of 

landslides occurs on steeper, more convergent slopes; hence, a high hazard rating is given to 

slope segments with the largest area of unstable ground per unit basin area. The model 

combines an analysis of digital elevation models with an empirical algorithm that expresses 

stability classes on the basis of measured landslide densities, as obtained from mass-wasting 

inventories in terrain with similar geologic, climatic, hydrologic, and vegetative regimes. 

Required model inputs are DEM data and a histogram of slope gradient versus density of 

shallow landsliding for the geographic area of interest. The model is used most effectively to 

extrapolate from areas with mapped landslides to those with little or no landslide data. 

A modified version of the Arcllnfo'm GRID curvature tool (Environmental Systems 

Research Institute (ESRI), 1992) is used to evaluate slope gradient and form (planar, concave, 
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convex), and a slope-morphology matrix is formed by the union of gradient and curvature 

(Table 2). This tool calculates the curvature of a surface at each cell center of a OEM grid, by 

evaluating hillslope gradient, aspect, planform curvature (i.e., measured transverse to slope 

direction and influences subsurface flow concentration or dispersal), and profile curvature (i.e., 

measured normal to slope direction and governs flow acceleration and deceleration). The 

mathematical derivation of curvature used in the ESRI package is developed by Zevenbergen 

and Thorne (1987), in which curvature is given as the divergence of the gradient, or the 

LaPlacian of the topographic surface, Z, as described by a fourth-order polynomial of the form: 

Curvature= V2Z = V2{Ax2y2 + Bx2y + Cxy2 + Dx2 + Ey2 + Fxy + Gx + Hy + 1). [1] 

The 9 elevations of a 3x3 matrix of surface cells are used to calculate parameters A through I. 

Matrix elements are assigned management hazard calls of low, moderate, and high based on 

criteria defined in the landslide inventory used to calibrate the model (e.g., hazard ratings 

assigned by the analyst during watershed analysis). Hence, model output comprises a 

preliminary hazard-zonation map, with DEM-scale resolution, that can be used in management 

decision-making or as a tool for planning a thorough field investigation of landslides. 

This model was created specifically as a preliminary screening tool for field foresters 

and managers to use in landscape and timber-sale planning (Hoh Tribe and WDNR, 1993). It 

has been tested fairly extensively on the Olympic Peninsula (Shaw and Johnson, 1995) and 

less rigorously by other T/F/W cooperators elsewhere in the state. This model also was 

employed in an economic analysis of the habitat conservation plan for state-managed lands in 

western Washington (WDNR et al., 1997), to estimate the percentage of watershed areas that 

could be classified as having potentially unstable ground. Several model versions also have 

been distributed to government agencies and private timber companies in five western states; 

to date, however, no test results have been reported in a statistically meaningful manner. 
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SMORPH is available to the public from the WDNR: 

2.3 SHALSTAB model 

The SHALSTAB model outputs, for each OEM cell, the relative potential for shallow 

limdsliding in terms of steady-state rainfall required to fully saturate the soil mass (Montgomery 

and Dietrich, 1994). It couples OEM data and a planar infinite-slope stability model with a 

hydrologic model (TOPOG; O'Loughlin, 1986) that predicts near-surface throughflow in 

topographic elements identified by the intersection of topographic contours. Critical rainfall, Q,, 

necessary to saturate soils and initiate soil movement is expressed as: 

Q, = TsinS (a/b)"' [c'(pwgz cos2S tan!jl)"1 + (P/Pw)(1- tanS/tan!JJ)] [2] 

where Tis the depth-integrated soil transmissivity, S is the local slope, a is the upslope 

contributing area, b is the slope length across which subsurface flow is accounted for, c' is the 

effective soil cohesion as governed by root strength, Pw is the bulk density of water, g is 

gravitational acceleration, z is soil thickness, !jl is the internal angle of friction of the soil, and Ps 

is the bulk density of the soil (see Montgomery et al., 1998; their equation 5a). 

This model calculates a numerical value of Q, required to cause landsliding for each 

OEM cell. Analogous to the factor of safety, Qc values are assigned a slope-stability risk factor 

(i.e., unconditionally stable, unstable, stable, and unconditionally stable; Table 3). OEM cells 

are classified as unconditionally stable when they occupy fully saturated soils on slopes less 

than some value that is dependent on the soil friction angle and bulk density specified in the 

model (e.g., !jl = 33°, Ps = 2000 kg/m3 in model tests described in Montgomery et al., 1998): 

tanS ~ tan!jl [1 - (pjp5)] • Conversely, OEM cells are designated unconditionally unstable when 

soils are dry and slopes are greater than the gradient threshold value: tanS > tan!jl. For 
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practical applications in which a hazard-potential rating is desired, the user must translate these 

stability terms into management criteria (e.g., low, moderate, high) based on an empirical 

knowledge of instability or other diagnostic criteria. In this paper, we offer one option for 

creating management criteria from model output. 

Most model applications that have been published to date (Montgomery and Dietrich, 

1994; Montgomery et al., 1998) have held soil properties and hydrologic variables constant (i.e., 

soil depth, internal angle of friction, and transmissivity, and effective soil cohesion; see paper 

section 3.3 for additional discussion). This method reduces the functional elements of the 

model to those related to topography (i.e., gradient and curvature) and area (i.e., contributing 

area upslope of each topographic element). 

Model results have been compared by the authors with landslide inventory maps for 

small coastal catchments in northern California, central Oregon, and the western Olympic 

Peninsula (Montgomery and Dietrich, 1994). In addition, Montgomery et al. (1998) have tested 

model performance in 14 watersheds for which landslide inventories have been compiled. 

SHALSTAB is available from the authors and at the Internet Web site of the University of 

Washington. 

2.4 Other models not selected for this study 

A number of other models were considered but not chosen for this comparative test 

because of availability and software-development issues. They include shallow landslide 

models ofWu and Sidle (1995), Wu and Abdei-Latif (1995, 1997), Packet al. (1998), and 

(Earth Systems Institute, pers. comm.). Other methods were too site-specific to be applied over 

large geographic areas, as required of a watershed analysis or statewide landslide screen (e.g., 

LISA and DLISA; Hammond et a f., 1992). For a general review of analytical methods other 
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. 
than GIS-based modeling, see literature reviews in papers by Montgomery and Dietrich (1994) 

and Wu and Sidle (1995). 

Although not available or testable in their current form, these models show promise for 

future management applications, in that they explicitly treat a number of the problematic spatial 

and temporal distributions in critical slope-stability factors. Better physical characterizations of 

these factors could improve predictive capability of GIS modelling techniques beyond those 

employed currently in SHALSTAB and SMORPH. Any of these models reasonably could be 

developed as a GIS slope-stability cover should they prove in future to yield more accurate 

predictions of landslide potential. Similar to SHALSTAB, several of these models (e.g., Wu and 

Sidle, 1995; Wu and Abdei-Latif, 1997) would require an additional algorithm that instructs the 

user on translating model output into management criteria (e.g., low, moderate, high hazard). 

These models are summarized in subsequent paragraphs, to illustrate their similarities and 

dissimilarities with the models used in this comparative test (i.e., SHALSTAB and SMORPH). 

The dSLAM model (.!Nu and Sidle, 1995) currently is not available for public use and, 

hence, could not be evaluated fully. It couples DEM data with a planar infinite-slope stability 

model, a hydrologic algorithm that simulates groundwater movement as kinematic waves 

through topographic elements similar to those constructed in the SHALSTAB model, and an 

algorithm that explicitly characterizes root strength. Whereas contributing rainfall is treated as 

steady-state in the SHALSTAB model, this model can accommodate spatially constant but 

temporally varying rainfall input (i.e., single or multiple storm events). Hence, the model must 

calculate a factor of safety in time steps to simulate the measured rainfall patterns. The model 

requires as input site-specific data on soil properties, vegetation type and age, and individual 

storm hyetographs (e.g., actual or simulated). Consequently, this model is computationally 

more complex and labor-intensive than the SHALSTAB model. Outputs of these model 
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simulations are shown as landslide and debris-flow"path location maps, factor-of-safety 

distributions, and distributions of failure (i.e., hazard) potential. Management criteria (i.e., low, 

moderate, high "hazard") must be assigned by the user based on local knowledge. The dSLAM 

model has been evaluated by the authors on its ability to reproduce physical characteristics of 

measured landslides in a small tributary drainage in the Oregon Coast Range. 

The shallow landslide model of Wu and Abdei-Latif (1995, 1997) currently is not 

programmed to run on one operating system (T.H. Wu, pers. commun.) and, hence, was not 

accessible for the purposes of comparing GIS models in the Arc/lnfotm environment without 

additional programming work. This model operates similarly to SHALSTAB, by calculating 

water-table heights in hillslope elements based on DEM data, and applying them to infinite­

slope calculations of factors-of-safety. The slope units in which the water-table heights are 

derived can be of varying size and are chosen by Microimage MIPS (Map and Image 

Processing System). The hydrologic model component (Wu et al., 1993) is based on a lumped­

parameter, kinematic storage model using a first-order, second-moment approach to allow for 

stochastic soil-hydrologic properties (Reddi and Wu, 1991), in which the mean and variance of 

model output are determined from the mean and variance of model input. Rainfall and/or 

snowmelt is used to generate piezometric levels of corresponding recurrence intervals. The 

piezometric input is added to soil-strength properties to generate probabilities of failure for each 

slope element. Model output is a map showing ranges of failure probabilities (e.g., <0.01, 0.01-

0.05, 0.05-0.1 0, >0.1 0) for water inputs of a given recurrence interval. Such maps can be 

improved by using smaller slope elements, more data on soil properties, and updating with 

empirical landslide information. This model has been used to generate hazard maps for two 

USGS 7.5' quadrangles in Lewis County, Washington, and compared with landslide maps of 

that area generated by Dragovich and Brunengo (1995). 
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The SINMAP model of Packet al. (1998) is freely available on the Internet. We were 

not able to resolve with the authors a potential problem with the hydrologic component of the 

model during the course of this study and, hence, could not complete a test of model 

performance. This model is operated in GIS ArcView and couples the infinite-slope model with 

a topographically based, steady-state, hydrology model. The model requires no input data for 

soil, vegetation, and geologic factors known to influence slope stability; rather, these critical 

parameters are modeled as uniform distributions between empirically derived limits. The user 

may "pick" appropriate values for a specified watershed based on the ability of the resulting 

output to "capture" a high proportion of observed landslides and minimize the number of 

incorrectly identified sites (i.e., areas in which no landslides have been observed). Hence, 

model calibration requires the use of landslide inventory data, similar to the SMORPH model. 

Slope stability classes (e.g., low, moderate, high) are assigned based on a slope plot of 

landslide and non-landslide points. 

The shallow-landslide prediction method of Miller (Earth Systems Institute, pers. comm.) 

was not fully developed in time to be included in this comparative test. Their method couples a 

modified form of the SHALSTAB model with a debris-flow-runout algorithm (Benda and Cundy, 

1990) that predicts the potential delivery of landslide materials to the stream-channel network. 

This algorithm adds substantially to the management applicability of this method. For example, 

in the Washington State regulatory context, a management "hazard" is defined as the 

"likelihood of deliverability and adverse change to public resources" associated with a forest­

practices activity (WFPB, 1995; Chapter 222-22). Assigning a management rating, therefore, 

requires that the identified landslide be assessed to determine whether mass-wasting debris 

entered stream channels and was delivered to a reach with sensitive public resources (e.g., fish 

habitat). Hence, the debris-flow component might assist managers, particularly in addressing 
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landslide impacts on downstream resources. The model author also has modified the steady­

state rainfall criterion to calculate critical rainfall intensity as a function of storm duration. 

Similar to the SIN MAP algorithm for assigning landslide hazard calls, the model defines hazard 

on the basis of critical rainfall intensity and soil-parameter values required to "capture" 90% of 

the observed landslides in a given basin. Hence, this method also requires the use of landslide 

inventory data to calibrate slope-stability predictions and assign management criteria. 

3.0 Methods 

3.1 Study areas and landslide data 

We chose eight areas in western Washington (Figure 1) for this comparative test. The 

test basins range in size from 81 km2 to 331 km 2 (Table 4). Existing Watershed Administrative 

Units (WAUs) were used as the test-basin boundaries, wherever possible. WAUs, defined for 

the purposes of regulatory watershed analysis, typically follow major drainage divides; the 

larger-order river systems, however, may be divided into several WAUs to limit the watershed 

analyses to a maximum acreage that reasonably could be assessed in the limited time period 

permitted by law (WFPB, 1995). Hence, some of our test basins comprise only the upper or 

mid- sections of a major river system (e.g., Chehalis Headwaters WAU, Middle Hoh WAU). 

Preference was given to those WAUs with recently completed watershed analyses, to utilize 

existing databases and to take advantage of the standardized format of data collecting used in 

this regulatory process. 

One test basin (i.e., Morton) was created from portions of two existing WAUs (i.e., East 

Fork Tilton and Nineteen Creek) to accommodate data restrictions imposed by one of the 

models (i.e., Wu and Abdei-Latif, 1995, 1997) that was to be tested. As described previously, 

this model was incompletely programmed at the time of this study. Nonetheless, we continued 
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using the Morton basin for tests of other models, since all landslide data had been compiled in 

preparation for testing the Wu and Abdei-Latif model. 

We attempted to include at least one test watershed in each of the major geologic 

provinces in western Washington (Table 4; Thorsen, 1978). Parent materials range from glacial 

till/outwash and lightly metamorphosed sediments to volcanics and igneous intrusives. Test 

basins also vary in topographic relief (i.e., lowest to highest elevation points) from 818m., in the 

Chehalis Headwaters basin, to 1941m. in the Jordan-Boulder basin. Figure 2A and 2B 

demonstrate the relative relief differences between two test basins and show the spatial 

distribution of shallow landslides identified in recent watershed analyses. Our intent was to 

examine model performance in areas with different combinations of relief and parent materials, 

as a means for exploring model versatility and the feasibility of using each model as a 

management tool in diverse topographic and geologic settings. An apparent gap exists in our 

selection of test basins, between the North Fork Stilliguamish and Morton watersheds (Figure 

1 ). The central Cascades Range, roughly from the Snoqualmie River basin south to the Morton 

area, however, generally contains similar geologic units (i.e., rhyolitic to dacitic volcanics with 

associated clastics, intrusives, and scattered sedimentary basins; Schuster, 1992). Hence, we 

chose the Stilliguamish, Hazel, and Jordan-Boulder basins to represent the Cascades geologic 

units north of the Snoqualmie basin, and the Morton and East Fork Lewis basins to represent 

those to the south. 

The eight test basins contain a total of 2524 known landslides (Table 4), including 

shallow and deep-seated landslides (i.e., earthflows). We retained data on deep-seated 

landslides (e.g., earthflows) in the test database to evaluate the ability of each model to predict 

shallow landslide features that often are superimposed on more areally extensive earthflows. 

Predictions of unstable slopes made by each GIS model were compared with existing 
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landslide inventories and, where possible, hazard-zonation maps. Figures 3 A, B, and C 

illustrate three different test basins and show the existing SOILS screen with landslide-inventory 

data superimposed, the hazard-zonation maps from watershed analyses, and the model 

outputs from SHALSTAB and SMORPH. Note the differences in the geographic extent of the 

SOILS cover (Figures 3A versus 3C), and the variations in mapping styles used in hazard­

zonation maps (Figures 3A versus 38). 

Existing digital landslide inventories were acquired from the appropriate landowners in 

the test basins where watershed analyses had been performed (Table 5). Where inventories 

were not current or were spatially incomplete (i.e., original inventories covered only portions of 

the test area), we conducted aerial-photograph and field surveys to fill in data gaps. Aerial­

photo series extended from the mid-1940's through 1996, in most instances. All inventories 

were updated chronologically to include, at a minimum, the most recent storm event known to 

have triggered widespread landsliding throughout Washington State (i.e., the high-intensity, 

long-duration storm of February, 1996; Gerstel, 1996). In addition, most inventories were 

checked in the field to verify database accuracy (e.g., landslide type, location, size). Road­

related failures were retained in the test database, to evaluate the theory (e.g., Montgomery et 

al., 1998) that their locations are governed largely by hillslope gradient and topographic · 

convergence. Standardized field data-forms were designed similar to the those used in the 

mass wasting assessment of the regulatory watershed analysis (WFPB, 1997, Appendix A). 

Newly identified landslides were mapped on to 1:24,000 scale topographic maps and then 

digitized into the GIS (Arc!lnfo'm, version 8.0, for UNIX on a Solaris platform}, coded, and edit­

checked for positional and tabular accuracy. 

In some cases, we updated the landslide inventories to include small landslides (i.e., 

less than 100m2
) that might have been omitted due to time and mapping-resolution limitations 
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that customarily constrain the regulatory watershed•analysis process. We increased the 

number of recorded landslides on these inventories by an average 12%, during our field and 

aerial-photo verifications of the databases. In the Upper East Fork Lewis River watershed, for 

example, our reanalysis of the GIS landslide-inventory cover maintained by the USFS resulted 

in a 70% increase in the number of recorded landslides. Hence, the watershed-analysis­

derived landslide inventories really only provide a lower limit on the number of landslides 

present during the time period evaluated by the analyst (i.e., typically coinciding with the aerial­

photo record). Consequently, landslide inventories were used here only as a common basis for 

comparing model abilities to predict known contemporary landslides, recognizing that other 

shallow landslides have been overlooked or perhaps no longer can be discerned in the field and 

photo records due to such obscuring factors as vegetation regrowth. Additionally, we assumed 

that hazard-zonation maps, if carefully constructed, capture a fair percentage of topographic 

features that could have influenced landslide initiation in the more distant past. 

All inventory data were projected into Washington State Plane, south zone, North 

American Datum 1927. Having all data in the same projection allowed us to easily incorporate 

other existing data (e.g. hydrography, transportation), as well as provide a uniform projection 

from which to work. 

We encountered a number of problems with existing landslide data while updating and 

verifying mass-wasting inventories from the completed, regulatory watershed analyses. These 

included incorrect basemaps on which landslides were recorded, as well as incorrectly mapped 

landslides. Discrepancies between USDI Geological Survey (USGS) topographic maps and 

basemaps created from GIS for use in watershed analysis typically included differences in 

topographic-contour delineations and stream-channel positions. Keying landslide locations to 

these features on USGS topographic maps, for example, apparently cause a positional offset 
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when data are transferred to GIS DEM-based topography. A number of mapping errors also 

appeared to be related to inaccurate transfer of field data onto basemaps or incorrect digitizing 

from basemaps. In the Sol Due watershed, for example, we determined from a reassessment 

of aerial photographs that several landslides were mapped iri tributaries adjacent to the ones in 

which they actually exist. Hence, we remapped and redigitized landslides wherever we 

encountered such discrepancies during field or aerial-photo verification. 

Another common mapping problem is related to landslide size. Mapping techniques 

used by watershed analysts ranged from representing landslides as a point or symbol (e.g., 

circle) to delineating slides as polygons of finite area. The latter technique also included a 

range of mapping styles, from mapping the failure scarp separately to delineating the entire 

portion of slope involved in landsliding (e.g., some combination of the contributing area, 

initiation point, transport zone, debris-flow runout track, and depositional area), generally 

accompanied by little or no explanation of mapping style. In addition, landslide mapping is 

prone to some amount of inaccuracy, given that data are transferred between a number of 

different media (e.g., photos, maps, digital databases) with varying levels of resolution and 

precision, and often between different workers (e.g., field technicians, analysts, cartographers). 

To address problems of mapped landslide location and size, we created a buffer around 

landslides mapped as points or symbols, or polygons smaller than 100m2
• The buffer, mapped 

as a polygon of radius 15m. (50 ft.) around the presumed center of the landslide feature, 

assured 

that landslides registered in a 100m2 OEM grid cell when inventory data were compared with 

GIS model output. In many cases, landslide scarps and bodies were remapped, during aerial­

photo and field verification of the existing databases, to exclude associated features (e.g., 

contributing areas and debris-flow runout tracks). The landslide polygons then were joined with 
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the buffered landslide points to create a single coverage of mapped landslides. The polygon 

and buffer method also served to extend the mapped landslide area by an amount slightly 

larger than a OEM 10-m. grid cell, to account in part for imperfectly aligned digital landslide­

inventory data and OEM topography. 

Landslide hazard-zonation maps, created as a product of regulatory watershed 

analyses, were employed in this study to evaluate the ability of GIS models to predict areas 

considered by field analysts to have a potential for instability. Hazard-zonation maps produced 

via the regulatory watershed-analysis process (i.e., Mass-Wasting Map Unit maps; WFPB, 

1997, Appendix A) typically delineate areas of presumed low, moderate, and high potential for 

landsliding and delivery of debris to downstream (or downslope) areas with sensitive public 

resources. Digital hazard-zonation maps were available in only four of the eight test basins 

(Table 5). 

The principal dilemma faced with hazard-zonation maps is mapping resolution. 

Watershed analysts appear to use two styles of mapping: fine-scale and broad-brush. Fine­

scale mappers delineate map units in detail, attempting to include in a high-hazard polygon only 

those slopes a high probability of shallow landsliding and to exclude any stable ground (e.g., the 

ridge lines between hollows in steep, dissected terrain; see Figure 3A). Given that such 

resolution can be intractable on 1:24,000 scale maps, another mapping option is to include the 

entire area in a generic mapping unit and explain in the report text how to differentiate high and 

low hazard zones on the ground (e.g., Figure 38). These broad-brush techniques promote 

Type II mapping errors, in which more area is included in a high-hazard unit than likely would 

fail. Later in this paper, we discuss how GIS-based models might assist analysts in creating 

hazard-zonation maps that better reflect the scale and spatial distribution of topographic 

features influencing shallow landsliding. 
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3.2 OEM data 

Where available, we used OEMs with 1Om. grid resolution for the comparative test 

(Table 5). As discussed in paper section 4.5, we also compared model output using 10m. and 

30m. OEM data, to evaluate the relative percent change in area predicted to fall in each slope­

stability class and to quantify the increase in computational time that accompanies the use of 

finer-resolution OEMs. 

All GIS-based models described in this study depend heavily on OEMs. OEM problems 

commonly reported in the literature, and also evident in this study, include resolution and 

mapping artifacts. OEM data usually are distributed as datasets with borders approximating the 

boundaries of the original USGS topographic quadrangles, referred to cartographically as tiles. 

"Tiling" artifacts can occur along the seams between adjacent sets of OEM data (Figure 4, lower 

left), interrupting the actual represented surface with artificial cliffs along the tile edges. Tile 

edges often are interpreted by the GIS shallow-landslide models as representing areas of 

instability. This type of error only occurs at tile edges and does not propagate into the dataset. 

Tiling artifacts were observed most frequently in the 30-m. OEM data used in this study. 

"Edge effects" occur when the outermost grid cells of the study area (i.e., the clipped 

edges of the OEM) do not have the same general values as adjacent cells (Figure 4, lower 

right). This phenomenon only affects the outermost two or three grid cells at the edges of the 

OEM, and it does not propagate into the dataset. To eliminate edge effects in the test 

databases, all GIS shallow-landslide models were run on a OEM grid larger than the basin area. 

The model output then was clipped along with the basin boundary. 

In the 10-m. resolution data, the elevation values appear to have a slightly stepped 

pattern, resulting in model output with elevation bands (e.g., contours) of similar predicted 

value. Typically, banding results in slope-parallel arcs of one hazard-potential class, within 
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broader polygons of a different hazard-potential class (Figure 4, upper left). The cause of this 

elevation banding is unknown; however, it may be related to the original elevation-value 

collection scheme. Elevation data were created by scanning USGS 7.5-minute topographic 

quadrangles, vectorizing the scanned data, coding the vectors, and then assigning x, y, and z 

coordinate values on a 10-m. grid using linear interpolation. This process may result in some 

elevation banding. OEM data with 10-m. resolution are not subject to many smoothing filters, 

as smoothing tends to degrade original topographic data. This lack of smoothing may also 

have some effect on elevation banding. 

Resolution of available DEMs also can be problematic for precisely locating terrain 

features. As discussed in paper section 4.5, the relative resolution of 10-m. versus 30-m. 

elevation data creates a better representation of the actual ground surface (e.g., see Figure 5), 

especially in resolving small stream channels emanating from zero- and first- order basins, 

common initiation sites for shallow landslides (Dietrich et al., 1986). For example, 30-m. DEMs 

have a resolution in the x- andy- planes of 30.5 m. (100ft.) and 45.7 m. (150ft.). Hence, 

landslides digitized onto 30-m. DEMs from USGS topographic maps can be positioned more 

than one OEM grid cell from their true location, resulting in mismatches between spatial 

distributions of inventoried landslides and OEM grid cells with predicted unstable slopes. In 

addition, contour splines fit through 30-m. OEM elevation points can lack curvature more 

characteristic of USGS topographic maps, causing an artificial angularity in topographic 

features and resulting in relatively poor matches between contour crenulations and stream 

courses overlain from GIS hydrology layers. The finer resolution of 10-m. data (i.e., 12.2 m. (40 

ft.) in the x- and y- planes, and 15.2 m. (50 ft.) in the z-plane), which is similar to that reported 

for USGS 7.5-minute quadrangles, results in a nearly accurate match between DEM-derived 

map contours and those on USGS maps. Consequently, the potential for matching errors 
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between DEMs and landslides digitized from topographic maps is considerably less when using 

10-m. versus 30-m. DEMs. 

3.3 GIS model calibration and database development 

The SOILS screen required no adjustments to be employed in this study, and in fact 

cannot be adjusted to accommodate any new information, including altered soil classifications 

or gradient classes, without significant revamping of the GIS cover. The digital soils database 

for federal lands, maintained by the USDA Forest Service on the Internet, was merged with that 

maintained for state and private lands by the WDNR (1988). Nonetheless, six of eight test 

basins had incomplete digital soil covers (Table 5), due largely to gaps in soils-layer coverage 

on federal property (e.g., Figure 6). For statistical analysis of comparisons between the digital 

landslide inventories and soils slope-stability cover in these test basins, an existing landslide 

was given a "no data" value where the soils cover was lacking. 

The SMORPH model was calibrated in each test basin with its respective landslide­

inventory data to adjust the critical slope classes and their hazard-rating designations in the 

gradient-curvature matrix (Table 2). A slope map derived from the DEMs was intersected with 

the landslide inventory to determine the maximum gradient found in each landslide polygon. A 

curve of maximum gradient versus cumulative frequency percent was created (Figure 7), with 

the lowest gradient at which a landslide occurred being used to determine the lower class limit 

of the moderate hazard rating. The lower class limit of the high hazard rating was established 

at a value for which 15% of the landslides occurred (Table 6), to guarantee a model-prediction 

rate of at least 85% of observed landslides. 

For consistency with other published tests of the SHALSTAB model (e.g., Montgomery 

et al., 1998), we used the following soil-property values: soil depth (z) = 1.0m; soil bulk density 
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(p.) = 2000 kg/m3
; internal friction angle(<!>)= 33°; effective cohesion (C') = 2 kN/m2

; and 

transmissivity (T) = 65 m2/day. These values were selected by Montgomery et al. (1998) based 

on extensive field measurements in a small catchment in coastal Oregon (Montgomery et al., 

1997}, and the authors felt that they gave reasonable results for their test watersheds in 

western Washington, including the Chehalis Headwaters WAU that we also use as a test basin. 

We then compared predictions of unstable-slope potential for the range of <1> angles and 

effective cohesions set internally in the model to yield a standard range of outputs (i.e., default 

parameters; <1> = 33 oand 45 o, and c'= 0, 2, 5, 8, 15 kN/m2
}, to evaluate the effect of modifying 

these parameters. In section 4.2 of this paper, we discuss the sensitivity of model output to 

variations in input values. 

Comparing SHALSTAB with the other GIS models required that we reduce all model 

outputs to a common denominator. SMORPH and the SOILS screen yield output in terms of 

management hazard ratings (e.g., low, moderate, high), in which the more subjective 

determination of what constitutes "hazard" and "risk" previously has been made in the policy 

arena. For example, the SMORPH slope matrix is calibrated with landslide-inventory and 

hazard-zonation databases created during regulatory watershed analyses for which definitions 

of hazard and risk have been set by T/F/W policy and WFPB regulations (WFPB, 1995, Chapter 

222-22 WAC). Likewise, the SOILS screen hazard designations are derived from unstable­

slope ratings in the state soil surveys. In the absence of another mechanism for converting all 

model outputs to the same units of measure, we therefore elected to assign hazard ratings to 

the SHALSTAB model output values of predicted critical rainfall, by using rainfall intensity and 

duration as the diagnostic criteria. 

Given that SHALSTAB model output is expressed as rainfall in mm/day, we created 

"precipitation rules" for each test basin by clipping the two-year, 24-hour storm isohyte data 
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(WDNR-GJS; Miller et al., 1973)and computing the· minimum, maximum, and mean 

precipitation values for each basin. A high hazard rating was given to each OEM grid cell in 

which the predicted critical-rainfall value fell in the model-defined Qc -stability class occupied by 

the mean precipitation value calculated for that basin (Table 7). A high rating was also given to 

any predicted Qc Jess than the minimum two-year, 24-hour calculated precipitation. A moderate 

hazard rating was assigned to a OEM cell in which the critical rainfall value occupied the Qc­

stability class corresponding to the maximum calculated precipitation. A low hazard rating was 

assigned to all other Qc stability classes. See Table 7 for the precipitation rules and slope­

stability hazards created for each test basin. 

The two-year, 24-hour recurrence interval was chosen as the precipitation regime for 

which data were readily available and which yielded the most conservative estimate of failure 

potential. The SHALSTAB model is configured such that the Jess frequent rainfall event yields 

a greater percentage of the basin area predicted to fail (Montgomery and Dietrich, 1994). 

Theoretically, then, a higher-intensity storm event characteristic of a longer recurrence interval, 

and/or a longer-duration rainfall, would result in greater spatial distribution of potential shallow 

landslides. 

This method of assigning management criteria to SHALSTAB output was chosen in the 

absence of established techniques or direction provided by the authors (e.g., see discussion of 

management applications in Montgomery et al., 1998). A preferred approach might be to. adjust 

the model in each test basin by using measured values of input parameters (e.g., soil 

transmissivity, bulk density, cohesion, internal friction angle), and calibrating predicted 

distributions of slope stability with observed landslide inventories and/or associated hazard­

zonation maps in which management criteria have been assigned (i.e., similar to the approach 

used by SMORPH). Adjusting input parameters in the current version of the SHALSTAB model 
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is problematic, given the relative paucity of soil-property data and the current lack of published 

algorithms for modelling stochastic elements or calibrating them from landslide inventories. 

Obtaining sufficient soil-parameter samples to adequately describe their spatial variability also 

could be intractable or prohibitively expensive for creating a landscape or regional GIS cover of 

predicted slope stability. 

Calibrating model output with landslide-potential ratings from hazard-zonation maps is 

problematic. We found, for example, that hazard map units with different management 

designations (e.g., low and high) might contain OEM grid cells with the same range of Qc- slope 

stability class values (e.g., 2 through 7; see Table 3), making it difficult to segregate the eight 

model-output classes into discrete management categories of low, moderate, and high. 

Calibrating model outputs solely on the basis of landslide inventories also can be misleading 

because, as discussed previously, they typically represent only contemporary rates of shallow 

landsliding, thus conceivably underestimating the density of potential landslide sites. Landslide 

density commonly has been a key factor in assigning management criteria to hazard-potential 

map polygons created from inventories (e.g., WFPB, 1997). 

The precipitation rules imposed by this study make a number of assumptions, not the 

least of which is steady-state throughflow of subsurface water. The SHALSTAB model, 

however, is founded on the assumption of steady-state rainfall, constant transmissivity, and 

spatially uniform soil saturation (Montgomery and Dietrich, 1994). Hence, the steady-state 

precipitation rules are consistent with these assumptions. As described further in report section 

4.1, the similarity of watershed-analysis-derived hazard-zonation maps and maps of landslide 

hazard potential made with SHALSTAB precipitation rules suggests that this approach yields 

reasonable results. Consequently, we have subscribed to this method in the absence of a 

proven alternative. 
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Figure 8 illustrates SHALSTAB model predictions of shallow-landslide potential in the 

Jordan-Boulder test basin, using the author-defined Qc criteria (Figure 8A) and predictions in 

terms of management criteria as defined by the precipitation rules (Figure 88). The 

comparatively large amount of area classified as high "hazard" by the precipitation-rule 

designations likely is the result of the way in which subsurface water throughflow, and hence 

"soil wetness" necessary to destabilize slopes, is calculated by the model. In the SHALSTAB 

program, water can flow through any one of a number of flow tubes that might diverge around 

topographic high points. Hence, the program codes these flow tubes, including the ones over 

intervening divergent topography (e.g., narrow ridgelines) as relatively unstable, which, in turn, 

are classified as high "hazard" by the precipitation rules. When the magnitude of effective 

cohesion is increased, resulting in less area classified as highly unstable, the model incurs 

relatively greater error in predicting known, existing landslides. Thus, the model has the 

potential for erring one way or the other depending on the assigned values of the input 

variables. One approach for resolving this dilemma would be to iterate on the magnitudes of 

cohesion until a value is achieved that yields model output most closely resembling the spatial 

distribution of existing landslides. As an additional note, the juxtaposition of high and low 

"hazard" units in the lower portion of the figure is not an artifact; this terrain contains very steep, 

generally unstable slopes that terminate on flat, glaciated valley bottoms (e.g., see Figure 2A). 

4.0 Test Results and Discussion 

For the purposes of testing and comparing models, a number of criteria are used to 

evaluate the predictive capability and management applicability of each model. Test criteria 

have been divided into two categories: scientific and technical. Together with the critical 

questions that we posed for each model, these criteria are: 
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[A] scientific: 

(1) model performance: How do model predictions of shallow landsliding compare with 

existing landslide inventories and hazard-zonation maps? How do model 

predictions compare with respect to each other? 

(2) method limitations: Do data input requirements, particularly those dependent on 

fieldwork, limit the utility of the model? Are model assumptions regarding 

geomorphic processes or input variables relevant to all western Washington 

watersheds? 

(3) geographic applicability: Is the model appropriate for use in all forested watersheds 

in western Washington, and can a reliable slope-stability map cover be created 

for regional or statewide use? 

(4) management applications: Can the model be applied to management decision­

making, and if so, are they accessible to users? 

(5) modification requirements: What additional adaptations must be made to facilitate 

creating management criteria (e.g., low, moderate, high "hazard") from model 

output? Could and should the model be modified by its author(s) to improve its 

predictive capability for all terrain types in western Washington? 

[B] technical: 

(1) computational time: How long does it take to run the model for an average-sized 

basin (e.g., on the order of a WAU)? How long would it take to create a GIS 

cover for western Washington? 

(2) training requirements: Assuming basic computer skills, how much training is needed 

to run the model, interpret model results, and apply results to management 

problems? 
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(3) data requirements: Can the model be run with default values for input variables, if 

field data are nonexistent? Does model accuracy improve with increasing DEM 

resolution? 

(4) data storage and retrieval: Do model runs or their output require large disk-storage 

space? Can the model be run on a personal computer (PC) with GIS software? 

(5) modification requirements: Is the model computer code adequately documented to 

aid users in adjusting input values or programming management criteria? Are 

further modifications needed to adapt the model for management use? 

In this paper section, we discuss issues [A] (1 through 3) and [B] with respect to the three 

tested models. Management applications and model modification requirements are discussed 

in report section 5.0. 

4.1 Model performance 

We evaluated the performance of each model by using the GIS to intersect the updated, 

digital landslide inventories and hazard-zonation maps with model predictions of slope stability. 

For each model, output was expressed in terms of management criteria (i.e., low, moderate, 

high "hazard"), as described in the report section 3.0, so that model performances could be 

compared directly. We statistically analyzed the following, as a measure of the performance of 

each model: (1) intersection of the digital landslide inventory with model predictions of hazard 

potential, expressed as the number of incorrectly identified landslides per 

total number of landslides in each test basin (i.e., Type I model errors); 

(2) intersection of the hazard-zonation maps with model predictions of hazard potential, 

given as the percent probability that the model predicts a low landslide potential 

where it is likely that landslides have occurred or will occur (i.e., Type I model 
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errors); and, 

(3) intersection as in (2) but expressed as the percent probability that the model predicts 

the potential for landslides where they are not likely to occur (i.e., Type II model 

errors). 

Inventories of known existing landslides and maps of hazard potential often are used in 

different management contexts. For that reason, we calculated Type I errors first by 

intersecting model outputs with the landslide inventories, to evaluate the ability of each model to 

predict the spatial distribution of existing landslides. We then computed Type I errors 

associated with comparing model outputs and hazard-zonation maps, to assess model abilities 

to predict the spatial distribution of existing and potential slope instability. Given that landslide 

inventories typically provide only a minimum estimate of contemporary landslide rates, the 

hazard-zonation maps theoretically yield a more complete view of the spatial distribution of 

past, present, and potential future landslide occurrences. 

Table 8 lists, for each model, the number of incorrectly identified landslides per total 

number of landslides in each test basin (i.e., Type I errors). We assumed that an existing 

landslide was identified incorrectly if all OEM grid cells overlapping the landslide polygon or its 

15m. (50 ft.) buffer (e.g., see report section 3.1) were coded by the model as having a low 

potential (hazard) for shallow landsliding. Conversely, an existing landslide was assumed to be 

identified correctly if any overlapping OEM grid cell was predicted to have a moderate or high 

potential (hazard) for landsliding. OEM cells with no data entry in the SOILS screen (i.e., 

missing soil-survey data) were coded as an incorrect identification, to account statistically for 

the incomplete nature of the data coverage. For this test, the SHALSTAB model was run using 

default parameters 4> = 33 ° and C' = 2 kN/m 2 and assuming that the two-year 24-hour storm 

recurrence interval is a reasonable criterion for assigning hazard-potential ratings to the model 
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output (i.e., see report section 3.3). 

A principal assumption of the model comparative tests is that predictions of landslide 

probability densities can be compared even though the GIS covers contain known mapping 

artifacts (e.g., elevation banding), as described in section 3.2. Given that model predictions of 

slope stability are evaluated using the same DEMs and landslide databases, the model outputs 

could be evaluated relative to one another. However, computed statistics (e.g., average 

number of landslides incorrectly identified by each model) should be viewed as estimates rather 

than absolute values, because the errors in model predictions associated with database noise 

(e.g., DEM elevation banding, field-mapping accuracy and resolution). 

Table 8 indicates that the SOILS screen did not identify 32% of the total known 

landslides in all eight test basins, whereas the SMORPH and SHALSTAB models misidentifed 

3% and 8%, respectively. Figure 9 displays the relative range of model predictions with 

SMORPH versus SHALSTAB, shown as histograms of the number of total landslides predicted 

in each model-output category. According to the precipitation rules, SHALSTAB classes of Qc = 

1, 2, 3, ± 4 fall in the management-criteria class 3 (i.e., high "hazard"). Montgomery et al. 

(1998) also reported from their test of the SHALSTAB model that it predicted unconditionally 

stable slopes in 24% of the area containing known existing landslides, although they discounted 

approximately half of these failures as being road-related or undistinguishable on 30-m. DEMs 

and, hence, outside the realm of model predictive capability. The use of more accurate DEMs 

could account, in part, for the relatively smaller fraction of landslides undetected by SHALSTAB 

in this test. The significantly higher percentage of landslides missed by the SOILS screen can 

be attributed to the lack or near lack of soil-survey data for two of the test basins (i.e., the North 

Fork Stilliguamish and Upper East Fork Lewis watersheds; see Table 5), given that missing 

data were coded as undetected landslides for the purposes of comparing model performances 
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(see report section 3.1). Where the SOILS screen was complete (e.g., Morton and Chehalis 

Headwaters watersheds), however, it misidentified a significantly higher percentage of 

landslides than the other two models (e.g., for the Chehalis Headwaters watershed, 32% versus 

2% each for the SMORPH and SHALSTAB models). 

In the Olympic Peninsula test basins, the SOILS screen misidentified more landslides 

than SMORPH but fewer than SHALSTAB (e.g., in the Hoh watershed, 67 versus 53 and 84, 

respectively). The fact that these were the only basins for which 30-m. DEMs were used was 

ruled out as a likely cause. In other test basins for which model results were compared using 

both 10-m. and 30-m. DEMs, there was no change in the ordering of models based on their 

predictive accuracy, although the relative magnitudes of predicted landslide occurrence (i.e., 

number of correctly identified existing landslides) differed between 10-m. and 30-m. DEM test 

results for each model. Hence, the seemingly better performance of the SOILS screen might 

be explained by at least two compounding factors. One is that, for the portions of the test 

basins in which soils data exist, the SOILS screen classes 68% of the Sol Due and 84% of the 

Hoh basin terrain as potentially unstable or very unstable, so that the majority of the landscape 

and its associated landslides fall within the high-hazard-potential category. Although this result 

lends the appearance that the SOILS screen more closely reflects the spatial distribution of 

known landslides than does SHALSTAB, it also tends to over-predict significantly the percent of 

watershed area predicted by field-derived, hazard-zonation maps to be potentially unstable (see 

further discussion of the SOILS screen in this paper section). 

Another compounding factor is that the SOILS screen and SMORPH model consider 

hillslopes as being potentially unstable at gradients somewhat lower than the threshold gradient 

defined in the SHALSTAB model. In the latter model, slopes are considered unconditionally 

stable when tanS ;; tan¢ [1 - (pjp5)] which, for cjl = 33o and Ps = 2000 kg/m3
, means any slopes 
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. 
less than 18° (32.5%). Field evidence suggests that non-road-related shallow landslides have 

occurred in this region on slopes closer to 25% (e.g., Shaw and Johnson, 1995; D. Parks, 

WDNR, pers. comm.), particularly in gently sloped, groundwater-seepage areas whose 

downslope margins coincide with the top of steep, inner-gorge slopes, which are quite common 

in this terrain. Hence, the SHALSTAB model has the potential for under-predicting the spatial 

distribution of unstable ground on hillslopes with gradients less than the threshold value set 

internally by the model. 

The SMORPH model predicted an average of 22 times fewer Type I errors than the 

SOILS screen and five times fewer than the SHALSTAB model. The greatest discrepancy in 

SMORPH and SHALSTAB model predictions occurred in the Hazel watershed (1% versus 32% 

incorrectly identified; Table 8). Given that the Hazel watershed is dominated by deep-seated 

landslides in thick glacial deposits (Table 4), we expected the predictive capability of both 

models to diminish correspondingly, with respect to locating earthflow-influenced topography. It 

appeared, however, that SMORPH was better able to distinguish the local slope and curvature 

of numerous shallow-landslide headscarps superimposed on the larger earthflows. Hence, the 

polygons representing deep-seated failures effectively were identified by SMORPH predictions 

of high hazard potential on the basis of these smaller secondary features. 

This variation in results might be explained by the manner in which the two models 

identify "hazard" potential in adjoining DEM grid cells. The SMORPH model analyzes variations 

in topographic relief between adjacent cells based on their relative steepness and curvature, 

then assigns a value according to the slope matrix (Table 2); hence, the model can discern 

topographic changes between a flatter upslope cell and a steeper downslope cell (i.e., a 

landslide headwall). On the other hand, the SHALSTAB model can smooth (i.e., not detect) 

subtle variations in topographic relief at the DEM-cell scale, by assigning a given flow tube a Qc 
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value depending on the flow across its upper boundary (i.e., variable "a" in Equation 2} from 

upslope contributing areas, which, in turn, is governed by the way in which flow is dispersed 

from that contributing area to any one of a number of downslope grid cells. Hence, if the 

upslope contributing area has a lower gradient and requires a relatively higher water flux to 

create "wet" soils, then a relatively steeper cell downslope (e.g., a landslide headwall} might not 

be predicted to fail until the same "wetness" is achieved. Hence, the grid cell downslope of the 

contributing area is given a lower slope-stability rating, whereas SMORPH assigns a higher 

value based solely on topographic factors. 

Although Table 8 indicates that SMORPH yielded 43% fewer Type I errors in predicting 

known landslide occurrences than SHALSTAB (Table 8), we wanted to evaluate whether these 

differences in model performance, based on a comparison in eight watersheds, were significant 

statistically. We used a non-parametric test for non-normally distributed, small, independent 

samples to evaluate the hypothesis that there is no difference in the average performance of 

the SMORPH (SM) and SHALSTAB (SH) models, in terms of their ability to predict the spatial 

distribution of known landslides. The null hypothesis is that the means (IJ) of the population of 

Type I errors for each model are equal when only eight independent samples (i.e., test basins) 

exist; H0: IJsM = IJsH· Equality of means was tested with the Wilcoxon rank-sum statistic for two 

populations (Walpole, 1974; MathSoft 1998), in which the null hypothesis was true if: 

Pr [IN,;, w =(a- n(n+1)/2)] >a, 

where Pr is the probability distribution, W is the test statistic, a is the smaller of the summed 

ranks for each population, n is the number of observations corresponding to a, and a = 0.01, 

0.05 is the level of significance. Table 9 indicates that the test statistic is significant at a 

confidence level of 95%, permitting rejection of the null hypothesis, which suggests that the 

models differ somewhat in their ability to predict known landslide distributions; that is, IJsM < IJsH· 
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However, the test statistic proved insignificant at the 99% confidence level (Table 9), allowing 

acceptance of the null hypothesis and implying that the difference in model predictive capability 

is relatively small. A similar statistical comparison of SHALSTAB and the SOILS screen 

indicated that the test statistic was significant at the 99% confidence level, implying that the 

screen and model are considerably different in their ability to predict existing landslide 

distributions. 

Tables 10 and 11, respectively, give the estimated Type I and Type II model errors for 

the SMORPH and SHALSTAB model based on a comparison of model output with hazard­

zonation maps. Error distributions were not computed for the SOILS screen, given that soils­

survey data were complete in only two of the test basins, neither of which had usable hazard­

zonation maps. Type I errors were calculated, for each model in each test basin, by 

intersecting the low-hazard DEM cells predicted by the model with the moderate- and/or high­

hazard map units produced via watershed analysis (i.e., incorporating all map units intersecting 

with known landslides in the GIS inventory layer). This database intersection was expressed 

numerically as a percentage of model-predicted, low-hazard areas (in km 2
) overlapping field­

mapped hazard areas. Type II errors similarly were analyzed by intersecting the high-hazard 

cells predicted by the model with the low-hazard map units and computing respective areas. 

These estimates were made for the four basins in which we had access to complete, digitized, 

hazard-zonation maps. To facilitate comparison (see Table 10 and 11), the percent error for 

each model (NM) in each basin was normalized by the basin area in a given hazard class (A) 

divided by the total A for all four basins (T), that is: E = (NM)(AIT). 

Analysis of Type I error estimates with respect to hazard-zonation maps indicates that 

the SMORPH and SHALSTAB models similarly under-predict the percent area of hazard map 

units determined to be of moderate and/or high failure potential, by an average 6% and 5%, 
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respectively. Using the Wilcoxon rank-sum statistic for two populations, as described · 

previously, the computed test statistic proved insignificant at the 95% confidence level (Table 

9), implying that the models perform similarly in predicting areas of relatively low hazard 

potential inside mapped landslide-hazard areas. 

Whether the observed discrepancies between model predictions and hazard-zonation 

map units represent true " Type 1 errors" in the statistical sense is debatable, given that three of 

the four hazard-zonation maps (i.e., Jordan-Boulder, Hazel, and Sol Due River) were drawn 

using broad map polygons (e.g., Figure 3B, lower left) that incorporated both unstable slopes 

and intervening stable ground. In the Jordan-Boulder basin, for example, hazard-zonation units 

intentionally were drawn to include potential landslide sites (e.g., hollows, groundwater seeps, 

inner gorges) and intervening divergent topography (e.g., ridge lines) because it was not 

possible to delineate them on 1:24,000 scale maps (Coho, 1997). Hence, the GIS-based 

models might discriminate, more accurately than the hazard-zonation maps, the topographic 

features potentially influencing shallow landslide initiation in finely dissected terrain. 

As a test of the influence of mapping resolution on hazard zonation maps, we 

intentionally created the hazard-zonation map units in the East Fork Lewis test basin with as 

fine a resolution as possible on 1:24,000 scale maps. This allowed us to compare model 

predictions with two different scales of hazard-map resolution (e.g., the Jordan-Boulder basin, 

Figure 3B, lower left; and East Fork Lewis basin, Figure 3A, lower left). Type I "errors" 

generated by SMORPH and SHALSTAB decreased substantially, from 14% and 9% for the 

Jordan-Boulder basin, respectively, to 1% and 2% for the East Fork Lewis basin (Table 10; 

values normalized as described previously). One implication of this result is that GIS-based 

model predictions of slope-stability potential could be used advantageously by analysts in 

drawing hazard-zonation maps with higher resolution than demonstrated, for example, in Figure 
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38. 

Table 11 shows the distribution of Type II errors generated by the SMORPH and 

SHALSTAB models, based on comparisons with hazard-zonation maps. As in Table 10, error 

values are given as normalized relative percent areas. Calculated error estimates for each of 

the test basins suggest that SMORPH over-predicts the percent area of hazard-zonation map 

units designated as high landslide potential, by an average amount slightly less than predicted 

by SHALSTAB (i.e., 3% versus 7%, respectively). In all four test basins, SHALSTAB tended to 

over-predict, by a factor of two greater than SMORPH, the spatial distribution of high-hazard 

areas observed on hazard-zonation maps, as depicted in Figure 10. With respect to the East 

Fork Lewis basin, which we believe was mapped fairly carefully for the purposes of this study, 

some amount of model over-prediction (i.e., 16% for SMORPH and 43% for SHALSTAB) might 

be true Type II errors. That is, the models likely do over-predict observed spatial patterns of 

slope-stability potential, as can be discerned from observed spatial patterns of existing and 

potential landslides. Particularly in the case of SHALSTAB, however, some portion of this over­

prediction might be an artifact of the manner in which hazard-potential criteria were derived 

(i.e., the Qc- slope stability classes assigned by precipitation rules to be included in the high­

hazard management designation), as discussed previously with regard to Figure 8. 

To evaluate the potential for model use in a management context, we developed a 

ranking scheme to quantify model performance and a number of other comparative criteria (see 

report section 5.0). We employed a statistical method for ranking models in terms of their 

ability to correctly and incorrectly identify known, existing shallow landslides. A numeric value 

was assigned to each of the possible database-intersect outcomes: 
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Type of database intersection Assigned value (p) 

Landslide overlaps with DEM cell coded by model as high hazard 0 

Landslide overlaps with DEM cell coded by model as moderate hazard 1 

Landslide overlaps with DEM cell coded by model as low hazard 2 

For example, an existing landslide was considered to be identified by a particular model if any 

superimposed DEM grid cell was coded "high hazard" (p = 0) or "moderate hazard" (p = 1). 

The assigned values for all correctly and incorrectly identified landslides in each of the eight test 

basins were added to yield a cumulative score for each model, which then was normalized by 

the total number of landslides in each basin. Where landslides occurred in areas for which the 

soils survey data were missing, the SOILS screen grid cells were given a score of p = 2. These 

normalized scores then were added to a score sheet including results of other tested criteria, as 

will be described in report section 5.0. 

Table 12 shows the results of this ranked test. SHALSTAB gained approximately twice 

as many points as SMORPH, reflected in the normalized cumulative scores (i.e., 1.9 versus 

0.8, respectively). The SOILS screen received a significantly higher score (i.e., 6.7) than the 

other two models, due in part to the partial or total absence of soils-survey data in most test 

basins. SHALSTAB received a greater cumulative score than SMORPH, largely due to more 

frequent intersections of identified landslide polygons with model-predicted low and moderate 

hazards (Figure 11 ). Some of the discrepancy theoretically could be attributed to our 

assignment of management criteria via the precipitation rules, as described with respect to 

Figure 8. 

At the outset of this study, we posed the following questions with regard to model 

performance: (1) How do model predictions of shallow landsliding compare with existing 
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landslide inventories and hazard-zonation maps?; and, (2) How do model predictions compare 

with respect to each other? In summary, test statistics imply that the SMORPH and 

SHALSTAB models predict fairly well the spatial distribution of known existing landslides in the 

eight test basins (i.e., error frequency of 3% and 8%, respectively). These models, in general, 

also compare favorably with maps of shallow-landslide potential produced via watershed 

analyses (i.e., 6% and 5% Type I errors, respectively; and 3% and 7% Type II errors, 

respectively). The SOILS screen performed least well, missing 32% of the known existing 

landslides (i.e., Type I errors) and providing an incomplete cover of a substantial percentage of 

western Washington terrain (e.g., full data coverage existed in only two of the eight test basins). 

Test statistics also indicated that the mean differences in predictive model capability between 

the SOILS screen and either model were statistically significant, whereas the mean differences 

between SMORPH and SHALSTAB were marginally significant statistically. Hence, we 

conclude that the SOILS screen is comparatively less accurate and certainly less complete than 

the two tested models. While the average differences in predictive capability of SMORPH and 

SHALSTAB were not great, the former model tended to produce slightly fewer Type I and II 

errors. Contingent on the appropriateness of the precipitation-rule algorithm used to calibrate 

the SHALSTAB model, we conclude that SMORPH is slightly more accurate than SHALSTAB in 

predicting existing and potential landslides as represented in our updated landslide-inventory 

and hazard-zonation-map databases. 

4.2 Method limitations 

The purpose of this study component was to evaluate the potential constraints placed 

on management use of each tested model, by: (1) the nature of the key assumptions used to 

create the model; (2) the type and amount of data required as model input; and, (3) model 
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sensitivity to changes in input parameters or variables. Limitations on model applications 

resulting from changes in terrain characteristics (i.e., geographic limitations) are discussed in 

paper section 4.3. 

As discussed previously, the principal assumption made by all three models is that 

topographic controls dominate the spatial distribution of shallow landsliding. The relatively 

small errors incurred by SHALSTAB and SMORPH in predicting known shallow-landslide 

occurrences (i.e., 8% and 3%, respectively; Table 8) and potential unstable slopes (i.e., <10% 

and <6%, respectively; Tables 10 and 11) suggest that this assumption is quite reasonable, 

because both models on average reproduce fairly faithfully the spatial distribution of unstable 

slopes as specified in field-derived inventories and hazard-potential maps. Furthermore, the 

slightly stronger performance of the SMORPH model, in terms of predictive capability, implies 

that topographic controls are a dominant factor in promoting shallow failures and that inclusion 

in the model algorithms of other key influencing factors (e.g., soil properties, hydrology, 

vegetation) might not improve model performance, at least with regard to predicting the spatial 

. distribution of shallow landslides in western Washington and similar terrains with maritime 

climates. 

The relatively simplistic SMORPH model offers some advantages in a management 

context because it yields results that are comparable to the more sophisticated SHALSTAB 

model, without having to calibrate input variables (e.g., soil and hydrology properties) with off­

site data or needing to collect additional data to run the model. In addition, a simplistic model 

with fewer data-input requirements contains less potential for Type I and II model errors 

associated with inaccurate characterizations of the spatial and temporal distributions of input 

variables. The SMORPH model, on the other hand, might lose substantial predictive capability 

in terrain where the topographic factors of hillslope gradient and curvature serve less well as 
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proxies for the other key influencing parameters. Models like SHALSTAB, which can be 

expanded and refined to include algorithms addressing spatial and/or temporal variabilities of 

soil and hydrologic factors, might be more appropriate in situations where landslide processes 

are not governed primarily by topographic forcing of soil- and water- mass fluxes. In its present 

form, however, the SHALSTAB model uses constant values for soil and hydrologic variables as 

placeholders for as-yet-undeveloped algorithms that would address problems of spatial and 

temporal variability. Hence, we conclude that the SHALSTAB model needs to be developed 

further before testing the hypothesis that factors other than topography might shape the spatial 

distribution of landslides. 

For the test basins in which the soils-data coverage was complete (i.e., Sol Due, Morton, 

and Chehalis Headwaters), the SOILS screen incurred the largest error in predicting known 

landslides (30%; see Table 8). This result suggests that basing shallow-landslide prediction on 

hillslope gradient and soil stability ratings generated by state soil surveys is less accurate and 

effective. Moreover, we suspect that the use in the SOILS algorithm of gradient, rather than 

gradient and curvature, contributes primarily to the greater inaccuracy of this method. The 

assumption of gradient and curvature as the primary landslide-forcing factors in western 

Washington is supported by the demonstrably better predictive capabilities of SMORPH and 

SHALSTAB. Hence, we believe that the SOILS method would be improved substantially by 

incorporating topographic curvature in the computational algorithm. 

Using SMORPH or SHALSTAB in a management context also is affected by the 

accessibility of data required as input to run the models. The SOILS screen cannot be adjusted 

to calibrate output with new or more accurate data, without recreating the GIS layer. Table 13 

lists: (1) the required input variables; (2) their default values as set internally in the models; (3) 

the typical sources of data available to the user in modifying default values without additional 
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fieldwork or analysis; and, (4) the relative ease in collecting data when values in the literature 

are inappropriate for the watershed of interest or watershed-specific data are nonexistent. For 

the purposes of comparison, each model was assigned a score reflecting the number of 

variables and the relative ease in collecting data from a given watershed to adjust the default 

values assigned to each variable. These scores are used in report section 5.0 to assess, in 

part, the management applicability of each model. Although the SOILS screen received zero 

points in this scheme, the score was adjusted later to reflect the relative drawback in using a 

method that cannot be adjusted to accommodate more accurate information on site or 

watershed physical variables. 

As described in report section 2.2, the SMORPH model requires that slope-stability 

classes be set on the basis of mapped landslide densities (e.g., a high hazard rating 

corresponds to slope units in which the greatest landslide number have been measured per unit 

basin area), which can be ascertained from landslide inventories. Hence, where landslide 

inventories and/or hazard-zonation maps exist, the model can be calibrated without additional 

analysis or field work. In addition, management criteria (i.e., low, moderate, and high hazard­

potential ratings) are known a priori because they are specified in, or can be derived, from 

watershed-analysis products. The greatest utility of this model lies in extrapolating from 

watersheds in which inventories have been compiled to areas with similar physical 

characteristics and no existing landslide databases. The limitations of this method are that it 

depends on the quality of the landslide database and the appropriateness of data extrapolation 

to basins where little physical data exist for verifying model predictions of potential landslide 

densities. Also, as mentioned previously, the simplicity of the model can be a detriment where 

topographic controls are sub- or co-dominant to other hillslope processes. 

As can be seen in Table 13, the SHALSTAB model would require the greatest amount of 
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literature and/or field analysis should the user decide to use values for input variables other 

than the defaults set internally in the model. Employing values from the literature can be 

problematic, given that little data exist on key soil input variables in western Washington 

watersheds. Montgomery et al. (1998), for example, use measured values obtained from a 

small catchment in coastal Oregon, in which the local geology and precipitation regime are not 

representative of all of western Washington. This model is limited, as in SMORPH, by the 

appropriateness of data extrapolation (e.g., from coastal Oregon to western Washington) and 

the quality of landslide inventories if model calibrations are performed using inventory data. 

Montgomery and Dietrich (1994) currently do not provide algorithms for addressing spatial and 

temporal variability in input parameters, nor are there standard methods for designing field 

sampling strategies and determining a representative value for an input variable if field 

measurements yield a wide range of values. It is possible computationally to run the model for 

discrete portions of a watershed which contain relatively homogeneous parent materials. Such 

an approach, however, might be prohibitively expensive or labor-intensive for landscape or 

regional management applications. Consequently, published uses of SHALSTAB to date (e.g., 

Montgomery et al., 1998) have employed the default values specified in Table 13. 

An additional limitation of the SHALSTAB model in the management arena, as alluded 

to by the model authors (Montgomery and Dietrich, 1994), is the current lack of a formula for 

converting model output (i.e., critical rainfall (mm/day) necessary to initiate shallow landsliding) 

to management criteria (i.e., low, moderate, and high "hazard" potential). As described in 

report section 3.3, we chose an approach that utilized existing data and similar units of 

measure. This method also circumvented needs for additional fieldwork or manipulations of 

landslide inventories to back-calculate appropriate values for input variables, the latter of which 

appears to require some field effort as well. Our approach, however, might need to be replaced 
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or refined as others begin to work on the problem and find more robust solutions. 

As a measure of model sensitivity to input-parameter variability, we ran the SMORPH 

and SHALSTAB programs for a range of input values. This test did not include the SOILS 

screen because of its non-adjustability. Table 14 shows the results of modifying the threshold 

gradient classes in the SMORPH model (Table 14A), and using the range of default values for 

effective cohesion and phi angles given in the SHALSTAB model (Table 148). These tables 

were compiled using the methods employed in Table 12, in which database intersections (i.e., 

landslide polygons from the inventory database and model predictions of slope stability for each 

OEM grid cell) were assigned a value depending on their agreement (p = 0 for a high-hazard 

OEM cell overlying a landslide polygon and p = 1 for a moderate-hazard cell overlying a 

landslide polygon) or disagreement (p = 2 for no match). As described for Table 12, the 

cumulative score for each test basin was normalized by the number of existing landslides, and 

the normalized scores for all eight basins were added to yield a total score for each model. The 

higher the score for each incremental increase in the magnitude of an input variable, the greater 

the number of known existing landslides incorrectly identified by the model (i.e., Type I errors). 

This technique provided a quantitative means for evaluating model predictions of slope-stability 

potential with changing values of the input variables. 

For each model, the values of the input variables were adjusted between those 

calibrated to yield model predictions most closely resembling the landslide inventory and 

minimum values at which the hillslopes were predicted to be entirely stable (i.e., no potential 

landslides). For the SMORPH model, this involved increasing the threshold gradients in each 

of the low, moderate, and high landslide-hazard potential categories until the model predicted 

that all watershed slopes would be fully stable. This was accomplished by shifting the slope 

hazard-potential classes calibrated from the landslide inventory along the horizontal plane of 
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the slope matrix (Table 15). For the SHALSTAB model, the effective cohesion was increased 

from c' = 0 kN/m2 to c' = 8 kN/m2
, at which point all watershed slopes were predicted to be 

entirely stable. 

Tables 14A demonstrates for the SMORPH model that, as the gradient thresholds 

increase for each of the hazard-potential categories (i.e., low, moderate, high), the frequency of 

Type I model errors increases correspondingly (i.e., database intersections assigned two points 

in the ranking scheme). The percent change (a%) in assigned points between applying the 

calibrated slope matrix (i.e., Step 0) and adjusting the matrix so that all slopes are predicted to 

be stable (i.e., Step oo) is a%= 0.04, when averaged over all eight basins. Likewise, Type I 

errors produced by the SHALSTAB model occur more frequently with increasing magnitudes of 

effective cohesion (Table 148). For the SHALSTAB model, the percent change averaged over 

eight test basins is a%= 0.09, when comparing model default options c' = 2 kN/m2 and c' = 8 

kN/m 2
, where 4> = 33 o is held constant. The results for the default option of c' = 15 kN/m 2 and 4> 

= 33 o are not shown, given that all watershed slopes were predicted to be fully stable at 

effective cohesions of c' > 5 kN/m2
• 

The percent change with increasing values of the input variables for each model was 

compared graphically by scaling the y-axis of a SMORPH plot of gradient-threshold class 

boundaries (i.e., Steps 24, 47, 70, and 93) versus cumulative percent change, by they-axis of a 

SHALSTAB plot of effective cohesions (i.e., c' = 2, 5, 8 kN/m2
) versus cumulative percent 

change (Figure 12), given regular increments of increasing gradient and cohesion along the 

respective x-axes. This permitted a visual comparison of the relative sensitivity of each model 

to changes in the magnitudes of input variables, as reflected in the incremental increases in the 

number of points assigned to correct (p = 0,1) and incorrect (p = 2) grid-cell intersections. 

Figure 12 shows that the SHALSTAB model is somewhat more sensitive to increases in the 
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value of effective cohesion than is SMORPH to increases in the gradient threshold at Which grid 

cells are predicted to have a low hazard potential (i.e., Type I model errors). That is, for an 

incremental increase of c' = 3 kN/m2 in the SHALSTAB model and gradientS= 23% in the 

SMORPH model, the former predicts a relatively greater percent change in the number of Type 

I errors than does the latter. Hence, we conclude that SHALSTAB is relatively more sensitive to 

changes in input variables than is SMORPH, although both models can produce erroneous 

results with inappropriately chosen values of the input variables. 

Figure 13 shows, for the Morton test basin, the Qc classes versus the cumulative 

percent area predicted by SHALSTAB to be unstable, for the a range of default effective­

cohesion values (i.e., c' = 2, 5, 8 kN/m2
). The curve represented by star symbols corresponds 

to the default input values of c' = 0 kN/m 2 and<!>= 45°. This figure also depicts the significant 

variation in the number of predicted landslides with increasing effective cohesion. As 

summarized by Montgomery et al. (1998), existing literature regarding the influence of root 

strength on soil mobility suggests that c' = 2 kN/m2 is appropriate for clearcut slopes with 

decaying tree stumps and c' = 8 kN/m2 is more representative of mature, hardwood-dominated 

forests or younger conifer stands. We found from model tests in the Morton watershed, for 

example, that effective cohesions of c' ~ 8 kN/m2 led to model predictions of fully stable slopes 

for any critical rainfall of Q, < 400 mm/day (16 in/day), which is twice the magnitude of a 100-

year, 24-hour storm event. 

This rainfall amount is greater than the probable maximum precipitation computed for the 

Morton area (N. Wolff, WDNR, pers. comm.), which suggests that cohesions of c' ~ 8 kN/m 2
, 

presumably characteristic of forested conditions, yield unrealistic model results when used as 

input values. 

Hence, the value of c' for which the SHALSTAB model predicts roughly the same spatial 
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distribution of existing landslides is that corresponding to a clearcut watershed. None of the 

eight tested watersheds is entirely clearcut. Using a value of c' more representative of partially 

or fully forested conditions, however, would have resulted in a significantly higher percentage of 

Type I model errors, including omission from model predictions of landslides known to have 

occurred in mature, previously unharvested stands (i.e., in portions of the Middle Hoh test 

basin). This problem might be resolved by running the model for discrete forest-age-class units 

with c' chosen separately for each unit. We did not explore this possibility due to study time 

constraints. 

The SHALSTAB model also appears to be quite sensitive to variation in the input value 

of the internal friction angle. We ran the model for the cases c' = 2 kN/m2, Q> = 33 o and c' = 

2kN/m2
, Q> = 45 °. Increasing the phi angle by 12 degrees resulted in a decrease of 89% in the 

area predicted by the model to be highly unstable (e.g., Qc classes 1 through 3 for the Upper 

East Fork Lewis basin). 

Hence, we conclude that both SHALSTAB and SMORPH are relatively sensitive to the 

magnitudes of their respective input variables, and that SHALSTAB is measurably more 

sensitive than SMORPH. We suggest that SHALSTAB model users employ conservative 

estimates of Q> and c', in the absence of reliable field measurements or proven methods for 

estimating appropriate values. Similar to Montgomery et al. (1998), we found that the 

combination of c' = 2 kN/m2 and Q> = 33 o yielded predicted landslide spatial distributions most 

closely resembling measured landslide distributions in all watersheds tested by this study. In 

addition, SMORPH modelers should calibrate the slope matrix designations of landslide hazard 

for each gradient class using accurate landslide inventories, wherever possible, to reduce the 

potential for Type I model errors. 
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4.3 Geographic applicability 

To investigate the ability of each model to correctly predict landslides in different 

western Washington terrains, we separated the eight test basins into six categories pertaining 

to major geomorphic provinces: continental glaciated terrain (Hazel), Cascades volcanic 

complex (Morton, Upper East Fork Lewis River), Northwestern Cascades system (Jordan­

Boulder, North Fork Stilliguamish River), Olympic core rocks (Sol Due River), Western Olympic 

Assemblage (Middle Hoh River), and Eocene volcaniclastics (Chehalis Headwaters) (see 

Figure 1 ). We rated each model in by the number of Type I errors it produced in each 

geomorphic province (Table 8, right-hand column). 

As described in sections 4.1 and 4.2, the Soils screen performed least well overall 

because of the lack of soils-survey data in six of the eight test basins and the inability of the 

method to discriminate slope curvature (i.e., 32% Type I errors). Of the test basins with 

complete or nearly complete data, the screen yielded the greatest percent of Type I errors in 

the Eocene-volcaniclastics (32% of the test basins) and Cascades-volcanics provinces (48% of 

the test basins), both regions of which incorporate most of southwestern Washington. Likely 

reasons are that the method could not detect relatively steeper, convergent features (e.g., inner 

gorges) inside broader, gentle slope areas, particularly in areas of lower topographic relief like 

the Chehalis Headwaters basin in which a substantial fraction of the existing failures were 

found. As described in report section 4.1, the broad inclusion of slopes in soil hazard-potential 

polygons resulted in fewer Type I errors in some test basins with the SOILS screen than with 

SHALSTAB, although the results still indicated substantial predictive errors in certain terrains 

(i.e .• the Hazel test basin). 

The SHALSTAB model performed least well in the continental-glaciated terrain (e.g., 

32% Type I errors in the Hazel test basin); Montgomery et al. (1998) also concluded in their test 
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that the model predicted landslides least well in thick glacial deposits. The percent of Type I 

model errors increased by an average 69% over those computed for the other five provinces. 

The model also produced approximately 60% more Type I errors than the SMORPH model in 

the Olympic terrains. as discussed in report section 4.1. 

The SMORPH model performed least well in the western Olympic test basin (7%) and, 

surprisingly, misidentified only 1% of the existing landslides in the continental-glaciated terrain. 

As discussed in report section 4.1, it appears that the Arcllnfo'm GRID tool is capable of 

discerning variations in gradient and slope curvature on the order of one OEM grid cell, allowing 

the model to detect 100m2 or larger shallow landslides superimposed on deep-seated failures. 

Thus, it appears that SMORPH might be more capable of identifying landslide features in 

glaciated terrain, although a larger sample of test basins would be required to properly evaluate 

this theory. 

We conclude from this test that SHALSTAB and SMORPH could reasonably be 

employed in most western Washington terrains to predict shallow landslides. The SHALSTAB 

model appears to work least well in continental-glaciated terrain, while preliminary results 

suggest that SMORPH might perform substantially better than SHALSTAB in glaciated 

topography dominated by deep-seated failures. The SOILS screen runs a distant third in most 

terrains because of the incomplete nature of the GIS coverage and the relatively greater 

percent of Type I model errors. 

4.4 Technical criteria 

We asked five general questions with respect to technical aspects of each method: (1) 

How long does it take to run the model program?; (2) How much training is required?; (3) How 

much computer space is required by the model programs?; and, (4) How easy would it be for 
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the user to modify the model? These questions would be important from a practical perspective 

and could influence how each model would be used in a management context. 

Prior to running any GIS-model program, it is critical that someone familiar with 

computing systems and Arc/lnfotm programming language verifies that the program is running 

correctly. The optimum method for double-checking program execution is to compare standard 

(i.e. default) model output with output obtained for the same geographic area from the model 

authors or from existing databases produced by the model on the WDNR-GIS system. None of 

the tested models has been refined sufficiently to document, internally or otherwise, all the 

known technical complexities of loading and running a program on a particular operating 

system, so it is important to test program execution. 

The purpose of evaluating computer processing time was to provide users with an 

estimate of the average time necessary to create slope stability screens, particularly when 

working at a landscape or regional scale. The SMORPH model program runs about five times 

faster than that for SHALSTAB. On average, for 30-m. DEMs, the SMORPH program takes 

three minutes to run for a WAU (i.e., an area typically less than 200 km2
), while it takes 18 

minutes to run the SHALSTAB program. Run time increases approximately three-fold when 

model programs are executed using 10-m. DEMs. If the user were to employ 10-m. DEMs in 

creating a slope stability screen of all western Washington WAUs, for example, the SMORPH 

program would require roughly 90 hours of computer time, while it would take well over 400 

hours of computer time to process the SHALSTAB program. The SOILS screen exists already; 

therefore, computer use is limited to the time it takes to create a map. 

A certain level of training is required to fully understand and use the model output, 

regardless of which model is being employed as a slope stability screen. Only very basic 

computer skills are necessary, however, to run model programs and create maps of the 
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predicted slope-stability distributions, assuming that OEMs exist for the area of interest. The 

user should know how to obtain access (i.e., "log in"), navigate, execute basic file commands, 

and run the model program on the computer system. However, a basic geotechnical 

understanding of landslide processes is necessary to calibrate the SHALSTAB and SMORPH 

models, and the SHALSTAB model additionally requires an ability to interpret and apply soil­

property and hydrologic (e.g., precipitation) data. 

Furthermore, the SOILS screen and SMORPH model give results of slope-stability 

analyses explicitly in terms of management criteria currently used in Washington (i.e., low, 

moderate, and high landslide potential}, so that interpretation of output is straight-forward if the 

user is familiar with their definitions. The default criteria used in SMORPH (Table 6) might need 

to be calibrated with landslide inventories from the basin of interest, or from an analogous 

watershed, and some training might be necessary in using the calibration algorithm. The 

current version of SHALSTAB provides no guidance for translating output to management 

criteria or for calibrating input variables to local area conditions. Consequently, more training 

and background knowledge are necessary for running the SHALSTAB program and interpreting 

model results. 

Given that OEM data are the only absolute requirement for all three models, data input 

requirements can be relatively straightforward. SHALSTAB and SMORPH provide default 

values for soil and slope properties, respectively, allowing the user to run the computer 

programs without first having to calibrate the models. We strongly recommend, however, that 

input values be calibrated to achieve greater predictive accuracy. 

High OEM resolution is key to producing reasonable results with SHALSTAB and 

SMORPH. The SOILS screen, in contrast, is unaffected by OEM resolution because it was 

derived from static data (i.e., fixed values for hillslope gradients and soil properties). OEMs with 
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. 
10-m. resolution g.enerate more .accurate results than 30-m. data because they better represent 

the true topographic surface. Figure 14 compares the frequency of predicted landslides in the 

Jordan-Boulder, North Fork Stilliguamish, and Hazel test basins, using 10-m. versus 30-m. 

DEMs. Results oftests using the SMORPH and SHALSTAB programs indicate that, when 10-

m. DEMs are used, both models predict relatively more failures in the unstable-slope classes 

(i.e., SMORPH slope-stability rating class 3 and SHALSTAB critical-rainfall classes 1, 2, and 3; 

see Figure 14). It should be noted, however, that this relatively greater number of landslides 

predicted using 10-m. DEMs is actually more representative of measured spatial landslide 

distributions in these basins. That is, employing 30-m. DEMs results in a higher percent of 

Type II model errors. On average, use of DEMs with 10-m. rather than 30-m. resolution leads 

to a 94% improvement in the predictive accuracy of the SMORPH model and 60% improvement 

in SHALSTAB results. Hence, it is recommended that 10-m. resolution data be used whenever 

possible. 

The SMORPH model requires the least amount of storage space on a computer system. 

It produces grid data, which use less storage space than GIS coverages like the SOILS screen. 

The SHALSTAB model also generates grid data; however, it produces one grid for each of the 

default output options (i.e., one grid for each of the preset combinations of c' and tjl). 

Additionally, SHALSTAB creates several other grids that typically are not used in a 

management context, although an experienced programmer can modify the code to circumvent 

creating these data layers. For geographic areas smaller than a typical WAU, data storage 

requirements do not pose problems for a computer with Arc/lnfo'm software, as a single grid or 

small set of grids does not take up much disk space. Data-storage problems are substantially 

greater for some systems (e.g., personal computers) when areas larger than the size of a 

typical WAU are used. 
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All tested models can be run on a personal computer with Arc/lnfotm software. The 

SHALSTAB model requires that the computer also have Fortran and C program executability 

for running subroutines that: (1) remove artificial topographic convergences occasionally 

created by the DEMs; and, (2) calculate upslope contributing areas to each grid cell for the 

hydrologic component of the model. Only the SOILS screen can be accessed on a personal 

computer with non-Arc/lnfo'm software and no additional programming. Both SHALSTAB and 

SMORPH would require additional programming to make them compatible with non-Arc/lnfotm 

software. 

User access to each of the three models would be improved by additional program or 

method documentation. SMORPH and SHALSTAB programs would benefit from more internal 

documentation, to assist future generations of programmers in adjusting the input variables. 

Some program documentation was developed, as part of this study, for both the SHALSTAB 

and SMORPH models. This on-line help consists of 'read.me' files (i.e., text files that assist 

with program executions) and internal documentation (i.e., comment lines within the program to 

assist the Arc/lnfo'm programmer in adjusting or calibrating the model). We also developed 

programs for viewing the model output and creating simple maps from the model data, and we 

created a menu-driven system for adjusting SMORPH slope criteria. A similar tool would 

enhance substantially the usability of the SHALSTAB program. A menu-driven system 

eliminates the need for a programmer to adjust the program input variables, and it serves to 

remind the user that input variables generally need to be calibrated for the area of interest. 

The SOILS screen, on the other hand, does not need internal documentation because it 

exists as a compiled cover, rather than an executable program. Metadata (i.e., data about the 

data) exist for the SOILS screen, but little documentation exists regarding the applicability of the 

WDNR-GIS SOILS layer to different management scenarios. The SOILS screen also lacks any 
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accompanying written discussion of the rationale for assigning management criteria to certain 

combinations of soil types and hillslope gradients. This information could assist the user in 

interpreting the accuracy of the slope-stability predictions, especially when the area of interest 

falls outside the specified soil-gradient class. 

5.0 Discussion and Conclusions Regarding Model Applications 

The primary purpose of this study was to evaluate in a management context the use of 

three currently available methods for predicting shallow landslides. In particular, our goal was 

to compare the current GIS slope-stability cover, used in Washington regulatory and 

management practices, with other, potentially more reliable, GIS-based models. Toward that 

end, we developed a rating scheme to measure the overall performance and applicability of the 

three tested methods with respect to the scientific and technical criteria discussed in this paper. 

The rating scheme was formulated so that each model would be scored for each 

identified criterion based on either of the following: (1) statistical values summarized elsewhere 

in this paper; or, (2) assigned points representing qualitative answers to questions for which no 

quantitative measures could be found. The latter were expressed as "yes" (usually assigned 

zero points; p = 0) or "no" (p = 1) questions. The lowest cumulative score reflects the model 

that generates unstable-slope predictions most comparable with existing landslide databases 

(i.e., fewer Type I model errors) and would be the most readily applicable in a management 

context. 

Table 16 shows the results of this rating exercise, and Table 17 lists, for each criterion, 

the rationale for the point assignment. The purpose of the numerical ranking is to describe 

relative performance; the magnitudes of the total scores, therefore, have no real significance for 

measuring how much better one model performs than the other. These results suggest that the 
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SMORPH model might offer more advantages in a management or regulatory contextthan the 

SOILS screen and the current version of SHALSTAB (i.e., with the values of soil-property and 

hydrologic input parameters held constant). 

In general, the reasons for the relatively higher rating (Table 16) of the SMORPH model 

are: 

(1) SMORPH generated spatial predictions of shallow landslides that most closely resembled 

the measured densities of known existing landslides (i.e., landslide inventory databases) 

and the field-derived maps of landslide hazard potential (Tables 8, 10, and 11). 

Specifically, the SMORPH model, on average, yielded fewer Type I and II model errors, 

even in continental-glaciated terrain; 

(2) SMORPH contains fewer input variables than SHALSTAB; consequently, there is less 

potential for Type I and II model errors associated with using input values that are 

unrepresentative of the study area. In addition, the input variables in SMORPH (i.e., 

gradient and slope curvature) appeared in general to be less sensitive to variation than 

SHALSTAB input variables (i.e., effective cohesion and internal friction angles; see 

Figure 12). The predictive capability of the SOILS screen likely is limited by the absence 

of a slope-curvature parameter in the computational algorithm, and the GIS cover 

cannot be adjusted to reflect hillslope gradients and soil properties outside the specified 

general categories. 

(3) The GIS cover generated with SMORPH uses management criteria (i.e., low, moderate, and 

high landslide-potential ratings) to signify classes of slope instability, whereas the 

SHALSTAB model outputs values, in terms of critical rainfall required to initiate 

landsliding, that require geomorphic interpretation to be applied in a management 

capacity. The SHALSTAB model currently does not provide a mechanism for converting 
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from critical rainfall units to management criteria. Hence, the SMORPH model is more 

readily applicable in the current management decision-making framework in 

Washington. 

(4) SMORPH runs approximately 80% faster than SHALSTAB on a computer workstation, 

which might be important to managers with limited computer resources and large data 

requirements (i.e., for creating regional screens of slope stability). SMORPH also 

requires about five times less data-storage volume than SHALSTAB and several times 

less storage volume than the SOILS screen. And; 

(5) Relatively less training is necessary to instruct users on executing SMORPH programs and 

interpreting model results. The SMORPH model also requires comparatively less 

assistance from technical specialists in calibrating input variables (i.e., adjusting the 

slope matrix with landslide-inventory data) and interpreting model results. The 

SHALSTAB model requires more data collection (e.g., to properly characterize soil 

properties and calibrate the model for the precipitation regime in the area of interest) 

and interpretation of model predictions, which are accomplished more easily by users 

with some background in geomorphology, geoengineering, soil science, and/or 

hydrology. 

Hence, the SMORPH model might fill the near-term needs of resource managers and 

regulators for a ready-to-use model that can create a landscape or regional shallow-landslide 

screen. 

The SMORPH model potentially offers some disadvantages as well. Together with the 

SOILS screen and the current version of SHALSTAB, this model could lose some predictive 

capability in terrain where topographic controls on shallow landslide initiation are secondary to 

other destabilizing factors (e.g., snow avalanching, slumping along earthflow margins, ground 
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subsidence, erosion of glacial deposits). The model would have to be modified substantially to 

include algorithms for explicitly treating variables other than slope gradient and form. 

Alternatively, the SHALSTAB model, using the precipitation-rule method for converting 

model output to management criteria, yields results that are fairly comparable with those of the 

SMORPH model and existing landslide inventories. This model potentially could be more 

versatile than SMORPH or the SOILS screen, because it contains placeholders for algorithms 

that would address explicitly the spatial and/or temporal variability of soil and hydrologic factors. 

In addition, future comparisons of the SMORPH model and a more sophisticated SHALSTAB 

model might resolve whether explicit treatments of soil and hydrologic properties (e.g., 

SHALSTAB) yield substantially better predictions of slope-stability potential than do more 

simple models in which topographic parameters serve as proxies for these key variables (e.g., 

SMORPH). Test statistics from this study suggest that the current version of the SHALSTAB 

model performs no better than SMORPH, even though it includes several key variables (i.e., 

soil transmissivity, depth, cohesion, bulk density, and internal friction angle), albeit expressed 

as constants. This result could be attributed to a number of factors, including the possibility that 

soil properties are of secondary importance compared with topographic factors, and that 

including them explicitly in predictive models is Jess critical than accurately simulating fine-scale 

variations in slope topography. 

The SOILS screen is relatively more "user-friendly" than the other two models because it 

is delivered to the user as a pre-compiled GIS cover that requires no calibration and gives 

results in terms of management criteria that can be incorporated readily in the existing 

regulatory and forest-management decision-making processes. Nonetheless, it received a 

comparatively less favorable score than SMORPH and SHALSTAB because it yielded 

significantly more Type I errors (i.e., incorrectly identified landslides). In addition, the SOILS 
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screen contains large gaps in geographic coverage· because digital soils-survey data are 

lacking on some portions of Washington, especially on federal lands. Furthermore, the digital 

soils layer maintained by the federal government (e.g., USDA Forest Service) can be 

incomplete, as was encountered in this study. 

Incompleteness aside, the relative inaccuracy of the SOILS screen puts it at a 

disadvantage when compared with the more accurate SMORPH and SHALSTAB models. 

Study results imply that the SOILS GIS cover, maintained by the state for management and 

regulatory applications, should be replaced by one created with either predictive model. Given 

that the SHALSTAB and SMORPH models have been developed and tested in maritime 

climates of the Pacific Northwest, they should be similarly analyzed for precipitation regimes 

and terrains more typical of the continental interior, prior to their use east of the Cascades 

Range or elsewhere. 

A number of interesting questions have arisen during this study regarding the technical 

merits of each GIS-based model, as well as the quality and applicability of landslide inventories 

and other databases used to calibrate the models. These include such issues as the relative 

need for including spatial variability of soil properties as elements of GIS-based models 

designed to be used in terrain where topographic controls dominate the spatial distribution of 

shallow landslides. Given that the SHALSTAB and SMORPH models, as currently configured, 

do not explicitly treat the stochastic nature of key variables, yet they predict relatively well the 

known distribution of landslide potential, attests to the real possibility that it might not be 

necessary to include spatial and temporal variability in the model frameworks. Furthermore, the 

relative agreement between SMORPH model predictions and observed landslides suggests that 

including soil properties in the model equation might not even be necessary for producing a 

reliable, preliminary landslide-screening tool designed for management applications. The same 
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argument could be made for SHALSTAB, since soil·variables are held constant and the model 

in essence functions like SMORPH in discriminating landslide potential on the basis of 

topographic factors. 

Our study also motivates the need for continued discussion of appropriate ways to 

parameterize model predictions of landslide potential in terms of management decision-making 

criteria. We have identified a number of alternatives for converting model predictions of 

landslide potential to decision criteria. All of them, however, rely on the current management 

formulation of what constitutes "hazard" and "risk", whereby hillslope processes are treated 

deterministically (e.g., the analysis of "hazard" does not necessarily take into account the 

history of landslide processes predating recent management activities). It may be that GIS­

based topographic models more accurately reflect the full spatial and temporal distribution of 

potential unstable slopes than do landslide databases generated during watershed analyses, 

because the former are measuring landslide potential based on landform characteristics that 

largely existed prior to 20th. century land management, while the latter are based heavily on 

aerial-photo interpretation and, hence, provide only a contemporary measure of landslide rates. 

GIS-based models, therefore, could be useful in helping to redefine the way in which hazard­

zonation maps typically are generated. 
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Table 1. 

Very Unstable 

Unstable 

Stable 

Table 2. 

Slope 
curvature 

Convex 

Planar 

Concave 

Table 3. 

a, class 

1 

2 

3 

4 

Criteria for determining slope stability from the SOILS data. 

Soils criteria for slope stability ratings 
Mass Wasting 

Potential 

map unils with slopes greater than 30% very high 

map units with slopes up to 30% high 

map units with slopes greater than 65% very high 

map units with slopes up to 30% medium 

map units with slopes from 30-65% high 

map units with slopes up to 30%, where the soil phase is rated as unstable medium 

map units with slopes up to 30% medium 

map units with slopes up to 30%, where the soil phase at 30-65% is also rated stable low 

Matrix relating slope curvature and gradient to shallow landslide potential, as used in the 
SMORPH model. The number and distribution of slope gradient classes (i.e., A - E) are set for a 
specific geomorphic unit with the aid of landslide inventories or slope stability analyses. 

Slope gradient (percent) 

A B c D E 

low low low low moderate 

low low low moderate high 

low moderate high high high 

Critical rainfall classes (Q,) designated by the SHALSTAB model. 

Rainfall amount needed a, class Rainfall amount needed 
to induce failure to induce failure 

Unconditionally unstable at this 5 200-400 millimeters per day 
cohesion 

6 greater than 400 millimeters per day 

0-50 millimeters per day 7 Unconditionally stable 

50-100 millimeters per day 8 Stable at this cohesion 

100-200 millimeters per day 
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Table 4. Physical and geologic characteristics of test basins. 

Test Basin Physiographic Geologic Province Area Topographic Number of 
Area Relief Known· 

(km2 and acres) (m) Land~lides 

Jordan-Boulder North Cascades Northwest Cascades Metamorphic 
133 km2 

Range Suite; includes meta-quartz diorite, 
1941 155 

low-grade schists and phyllites, and 
32,987 ac. 

plutonics 

North Fork North Cascades Low-grade metamorphosed 130 km2 

Stillaguamish Range sediments, including phyllite and 1504 215 
River greenschist 32,144 ac. 

Hazel western flank of Continental glacial deposits 98 km2 

Cascades Range - overlying low-grade 1528 117 
Puget Lowlands metamorphosed sediments 24,209 ac. 

Sol Due River northern Olympic Crescent Basalt and Olympic Lithic 185 km2 

Peninsula Assemblage (metamorphosed 915 101 
marine sediments) 45,674 ac. 

Middle Hoh western Olympic Western Olympic Assemblage; 331 km2 

River Peninsula extensively sheared and 1575 733 
metamorphosed marine sediments 81,879 ac. 

Morton Central Cascades Eocene to Recent andesitic 88 km2 

Range volcanics 1127 980 
21,686 ac. 

Chehalis Coast Range Eocene to Miocene mafic volcanic 182 km2 

Headwaters (Willapa Hills) assemblage 818 134 
45,000 ac. 

Upper East Fork Central Cascades Eocene to Recent andesitic 81 km2 

Lewis River Range volcanics with igneous intrusions 1022 89 
20,016 ac. 

1 Includes identified shallow and deep-seated landslides. 
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Table 5. OEM resolution and sources of data for the eight test basins. 

Test Basin Source of Hazard- OEM Percent Basin 
Landslide Zonation Map Resolution with Soils 

Inventory Data Available Layer 

Jordan-Boulder WDNR, 1997 Yes 10m 63% 

North Fork Perkins and 
Stillaguamish Collins (1997); 
River inventories No 10m 22% 

created for this 
study 

Hazel WDNR, 1998 Yes 10m 65% 

Sol Due River WDNR and 
USDA Forest Yes 30m 95% 

(4 WAUs) Service (1996) 

Middle Hoh WDNR (in No 
River preparation) 

30m 64% 
(not yet 
digitized) 

Morton Murray Pacific No 
Timber Corp. 

(Portions of 2 (1998) 10m 100% 
WAUs) (not available in 

digital format) 

Chehalis Weyerhaeuser No 
Headwaters Co. (1994); 

10m 100% 
updated for this (errors in digital 
study database) 

Upper East Fork USDA Forest 
Lewis River Service (1997) 

and inventories Yes 10m 2% 
created for this 
study 
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Table 6. Gradient threshold values (in percent) calculated from landslide databases for input to the 
SMORPH slope matrix (Table 2) for each test basin. See text for discussion. 

Gradient threshold corresponding to "hazard" designations for each curvature class 

Low for Low for Low for Moderate for High for all 
convex and convex and convex, convex, high slope forms 

Test Basins planar, planar, high for moderate for for planar, 
moderate for concave planar, high for concave 

concave concave 

Jordan-Boulder 15 45 50 70 00 

N.F. 15 40 47 70 00 

Stillaguamish 
River 

Hazel 15 24 47 70 00 

Sol Due River 15 24 47 70 00 

Middle Hoh 15 24 47 70 00 

River 

Morton 25 55 65 70 00 

Chehalis 15 65 70 80 00 

Headwaters 

Upper E.F. Lewis 40 50 60 70 00 

River 

87 



Table 7. PreCipitation "rules" used to create management criteria for the SHALSTAB model. See text for 
discussion. 

Management Criteria Area-Weighted Area-Weighted 

Test Basin Mean Maximum 
Low Moderate High Precipitation Precipitation 

"Hazard" "Hazard" "Hazard" 

Jordan-Boulder 6,7,8 5 1 ,2,3,4 108 127 

Upper North Fork 5,6,7,8 4 1,2,3 83 102 
Stillaguamish 

Hazel 5,6,7,8 4 1,2,3 80 102 

Sol Due 6,7,8 5 1,2,3,4 129 152 

Middle Hoh 6,7,8 5 1,2,3,4 185 229 

Morton 5,6,7,8 4 1 ,2,3 100 114 

Chehalis Headwaters 6,7,8 5 1,2,3,4 116 140 

E.F. Lewis 6,7,8 5 1 ,2,3,4 123 140 
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Table 8. 

Test Basin 

Jordan-
Boulder 

North Fork 
Stillaguamish 
River 

Hazel 

Predictions of known, existing shallow landslides using the three models (SOILS 
screen, SMORPH, and SHALSTAB), given as the number of incorrectly identified 
landslides (no. missed) per total number of landslides in each basin (see text). 

Number SOILS SMORPH SHALSTAB 
of {<!> = 33°, C' = 2kN/m2

) 

Identified 
Land- no. NIT no. NIT no. (NIT) 

slides (T) misse misse missed 
d d (N) 

(N) (N) 

155 40 0.26 0 0.00 5 0.03 

215 202 0.94 1 0.00 20 0.09 

117 34 0.29 1 0.01 37 0.32 

Sol Due River 101 6 0.06 1 0.01 12 0.12 

Middle Hoh 
733 67 0.09 53 0.07 84 0.11 

River 

Morton 134 64 0.48 5 0.04 14 0.10 

Chehalis 980 309 0.32 20 0.02 18 0.02 
Headwaters 

Upper East 
Fork Lewis 89 89 1.00 2 0.02 1 0.01 
River 

Mean 
315.5 101.4 

0.43 
10.4 0.02 23.9 

0.10 
(Std. Dev.): (± 0.36) (± 0.02) (± 0.1 0) 

Total: 2524 811 0.32 83 0.03 191 0.08 

89 



Table 9. Wilcoxon rank-sum test for two populations, comparing means (IJ) of error 
distributions generated by the SMORPH and SHALSTAB models (see Type I 
error estimates in Table 8 and 1 0). 

Test 
Comparison of Comparison of 

Test Criterion Variable 
SMORPH (1) and SOILS (1) and 

SHALSTAB (2) SHALST AB (2) 

Type I errors: 
n,, n2 8,8 8, 8 

Existing landslides 

a,, a2 15.5, 48.5 53.0, 11.0 

Wtest 
0.04 0.01 

statistic 

significant at Yes; Yes; 
a= 0.05? 1-11 < 1-12 1-11 > 1-12 

significant at No; Yes; 
a= 0.01? 1-11 = 1-12 IJ, > 1-12 

Type I errors: 
N/A 

Hazard-zonation n1, n2 4,4 
(see text) 

map units 

a1. a2 7.0, 9.0 

Wtest 
0.44 

statistic 

significant at No; 
a= 0.05? IJ, = 1-12 

significant at No; 
a= 0.01? IJ, = 1-12 
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Table 10. Type I model errors, in which each model predicts that shallow landslides likely do not occur, whereas field-derived 
maps of hazard zonation indicate that there is a moderate to high likelihood of landsliding. 

Mass-Wasting Map 
SMORPH Model 

Unit Data 

Basin Area 
Basin Area 

Test Basin with Moderate 
Total 

Map 
Predicted 

Map 
to High Hazard 

Basin 
Unit 

with Low (AIM) E= 
Unit 

Rating (km2
) 

Acres 
No.1 Hazard =P P(A/T) No.' 

(%) Rating (km') 
(A) 

(M) 

Jordan-Boulder 73.9 0.55 . 1 22.8 0.31 0.14 6, 7,8 

Hazel 
78.9 0.81 1 12.3 0.16 0.08 

5, 6, 
7, 8 

Sol Due River 2.7 0.01 1 1.0 0.39 0.01 6, 7, 8 

Upper East Fork 
9.0 0.11 1 1.7 0.19 0.01 6, 7, 8 

Lewis River 

Total: 164.5 (T) 

I I 
37.8 

I I II Mean: 41.1 0.37 9.5 0.26 0.06 

1 Map unit corresponds to "high" hazard potential as defined by gradient-curvature class (see Table 2). 
2 Map unit corresponds to "high" hazard potential as defined by precipitation rules (see Table 7). 
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SHALSTAB Model 

Basin Area 
Predicted with 

Low Hazard 
(AIM) E= 

Rating (km2
) 

=P P(A/T) 

(M) 

14.3 0.19 0.09 

12.5 0.16 0.08 

1.1 0.43 0.01 

2.3 0.26 0.02 

I 

30.2 

I I 7.6 0.26 0.05 I 



Table 11. Type II model errors, in which each model predicts that shallow landslides likely have a high probability of occurring, 
whereas field-derived maps of hazard zonation indicate that there is a low likelihood of landsliding. 

Mass-Wasting Map Unit 
SMORPH Model 

Data 

Basin Area 
Test Basin Basin Area with Total 

Map 
Predicted 

Low Hazard Basin 
Unit 

with High (AIM) E= 
Rating (km2

) Acres 
No.1 Hazard =P P(A/T) 

(A) (%) Rating (km2
) 

(M) 

Jordan-Boulder 59.6 0.45 3 9.1 0.15 0.03 

Hazel 
18.4 0.19 3 6.3 0.34 0.02 

Sol Due River 
182.1 0.99 3 19.0 0.10 0.05 

Upper East Fork 
72.0 0.89 3 11.7 0.16 0.03 Lewis River 

Total: 

I 
332.1 (T) 

I II I 
46.1 

I 0.1915ial Mean: 83.0 0.63 11.5 
. 

1 Map unit corresponds to "low" hazard potential as defined by gradient-curvature class (see Table 2). 
2 Map unit corresponds to "low" hazard potential as defined by precipitation rules (see Table 7). 
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SHALSTAB Model 

Basin Area 

Map 
Predicted 

Unit 
with High (AIM) E= 

No} Hazard =P P(A/T) 
Rating (km2

) 

(M) 

1, 2, 
17.8 0.30 0.05 3,4 

1, 2, 
14.3 0.78 0.04 

3 

1' 2, 26.3 0.14 0.08 
3,4 

1, 2, 
30.8 0.43 0.09 3,4 

I 
89.2 

I I 22.3 0.41 0.07 I 



Table 12. 

Test Basins 

Jordan-
Boulder 

Upper N. F. 
Stillaguamish 

Hazel 

SoiDuc 

Middle Hoh 

Morton 

Chehalis 
Headwaters 

Lewis 

Total: 

Comparison of model performance in correctly and incorrectly predicting 
landslide potential. For each model, slope-stability ratings of each OEM grid cell 
were compared with the landslide-inventory database. A numerical value was 
assigned to each of three possible database-intersection outcomes, as described 
in the text. 

SMORPH Model SHALSTAB Model SOILS Screen 

Number Calibrated Normalized c'=2 kN/m2 Normalized Modeled Normalized 
of slides model calibrated <!>=33° value value Value 

value valut> 

155 5 0.03 11 0.07 80 0.52 

215 15 0.07 50 0.23 404 1.88 
117 3 0.03 84 0.72 68 0.58 
101 11 0.11 26 0.26 12 0.12 
733 155 0.21 177 0.24 134 0.18 
134 28 0.21 44 0.33 128 0.96 

980 49 0.05 40 0.04 618 0.63 
89 9 0.10 2 0.02 178 2.00 

2524 275 0.81 434 1.91 1622 6.87 
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Table 13. 

Method 

SOILS screen 

SMORPH model 

SHALSTAB 
model 

List of required input variables for each model, their default values as specified in the model, and the data sources 
available to calibrate model output for the watershed of interest. The variable is assigned a rating of 1 if the required 
data for a specific watershed are relatively easy to obtain without substantial field work, and 2 for the converse. 

Relative Ease of Collecting 

Default Values Watershed-Specific Data 

Input Variable Description 
Units of 

Set in the Data Source 
Measure Rating Points Percent 

Model Assigned Total 
Points 

none no changes can be made without recreating the GIS 
N/A 0 0 

algorithm and cover layer 

threshold 
gradient class class-boundary values and 

1 
gradients for 

boundaries set threshold values can be adjusted 
(via landslide 

hillslope gradient 
different hazard-

percent at 15%,24%, based on landslide inventories and inventories and 0.1 

rating classes 
47%,70% extrapolated to adjacent 

DEMs) 
(Table 2) watersheds 

1 

soil cohesion tree root 
forest-soils and experimental 

(c') cohesion 
kN/m' 0, 2, 5, 8, 15 studies (see Montgomery et al., (can be estimated 

1998, for references) via forest-age-
class maps) 

depth-integrated, 2 
soil but soil depth 

soil surveys and isolated site-
transmissivity (and, hence, m2/day 65 (spatially and 

(T) wetness) held 
specific studies 

temporally 
constant variable) 

2 

soil depth given as soil surveys and isolated site-
0.9 

m 1 (spatially and (h) constant specific studies 
temporally 
variable) 

phi internal angle of 
if c' = 0, then 4> = 2 

(<!>) soil friction 
degrees 45•; else 4> = rock-mechanics literature (varies spatially by 

33° rock type) 

2 
soil bulk density given as 

kg/m3 2000 
soil surveys and isolated site- (spatially and 

(p, ) constant specific studies temporally 
variable) 
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Table 14. Results of a sensitivity test for the SMORPH and SHALSTAB models. For each model, the values of the input variables 
were changed and the predicted shallow-landslide distributions were compared with the existing landslide inventories 
according to the point scheme described in the text. A. Total scores for each test basin, shown as cumulative and 
normalized by the respective number of landslides, for the SMORPH model when the threshold gradients for low, 
moderate, and high landslide-hazard potential are increased (i.e., shifted laterally along the horizontal slope-matrix plane 
as in Table 15). B. Total scores, shown as cumulative and normalized, for the SHALSTAB model when the effective 
cohesion (c') and friction angle (cjl) are changed. 

A. SMORPH model: 

Change in Gradient Thresholds for Low, Moderate, and High Landslide-Potential Designations (see Figure_) 
Number of Assigned Points (Cumulative and Percent Total) 

Test No. Step 0 Norm. Step Norm. Step Norm. Step Norm. Step oo Norm. Percent 
Basin of Step 0 24 Step 24 47 Step 70 Step Step oo ~hange 

Slide 47 70 
s 

Jordan-
155 5 0.03 6 0.04 47 0.30 124 0.80 465 3.00 0.01 

Boulder 

NF Stilla-
215 15 0.07 27 0 .. 13 147 0.68 307 1.43 645 3.00 0.02 

guamish 

Hazel 117 3 0.03 40 0.34 109 0.93 170 1.45 351 3.00 0.01 

Sol Due 101 11 0.11 41 0.41 111 1.10 179 1.77 303 3.00 0.04 

Mid. Hoh 733 155 0.21 309 0.42 686 0.94 1174 1.60 1466 2.00 0.11 

Morton 134 28 0.21 25 0.19 72 0.54 146 1.09 268 2.00 0.11 

Chehalis 980 49 0.05 79 0.08 260 0.27 771 0.79 2940 3.00 0.02 

EF Lewis 89 9 0.10 6 0.07 32 0.36 88 0.99 178 2.00 0.05 

TOTAL: 2524 275 0.81 533 1.67 1464 5.12 2959 9.92 6616 21.00 0.04 

1 Percent change from preferred values (i.e., those resulting in predictions most similar to the spatial distribution of existing landslides; Step 0) and 

maximum values at which the hillslopes are predicted to be fully stable (i.e., Step oo). 
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Table 14 cont'd. Results of a sensitivity test for the SMORPH and SHALSTAB models. For each model, the values of the input 
variables were changed and the predicted shallow-landslide distributions were compared with the existing landslide 
inventories according to the point scheme described in the text. B. Total scores, shown as cumulative and 
normalized, for the SHALSTAB model when the effective cohesion (c') and friction angle (cf>) are changed as per 
the default values given by the model. 

B. SHALSTAB model: 

Change in Values of Effective Cohesion (c' = kN/m') and Friction Angle(<!>= degrees) 
Number of Assigned Points (Cumulative and Percent Total) 

Test No. c' = 2 Norm. c' = 0 Norm. c' = 5 Norm. c' = 8 Norm. Percent 
Basin of "'= 33 value <1>=45 value "'=33 value <t>= 33 value phange 

Slide 
s 

Jordan- 155 11 0.07 15 0.10 90 0.58 465 3.00 0.02 
Boulder 

NF Stilla- 215 50 0.23 95 0.44 278 1.29 645 3.00 0.08 
guamish 

Hazel 117 84 0.72 116 0.99 182 1.56 351 3.00 0.24 

SoiDuc 101 26 0.26 56 0.55 154 1.52 303 3.00 0.09 

Mid. Hoh 733 177 0.24 281 0.38 851 1.16 1466 2.00 0.12 

Morton 134 44 0.33 74 0.55 167 1.25 268 2.00 0.17 

Chehalis 980 40 0.04 72 0.07 2940 3.00 2940 3.00 0.01 

EF Lewis 89 2 0.02 9 0.10 60 0.67 178 2.00 0.01 

TOTAL: 2524 434 1.91 718 3.19 4722 11.04 6616 21.00 0.09 

1 Percent change from preferred values (i.e., those resulting in predictions most similar to the spatial distribution of existing landslides; c' = 2kN/m2 

and !j> = 33') and maximum values at which the hillslopes are predicted to be fully stable (i.e., c' = 8kN/m2 and !I>= 33'). 
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Table 15. Adjustment of the SMORPH slope matrix to test the sensitivity of increasing threshold gradients on model predictions of 
shallow-landslide potential. Step categories refer to step-wise shifts of the hazard-zonation criteria (i.e., low, moderate, 
high) with respect to the designated gradient-threshold classes, for the Olympic Peninsula test basins. L = predicted low 
shallow-landslide potential; M = moderate potential; H = high potential. 

Step 0: (Calibrated using landslide inventories) 
Gradient (%) 

Slope 

Slope 
Gradient(%) 

Curvature 
0 15 25 47 70 90 to oo 

Curvature 
0 15 25 47 70 to oo convex L L L L L M 

convex L L L L M planar L L L L M H 

planar L L L M H concave L L M H H H 

concave L M H H H Step 70: 

Step 47: 

Slope 
Gradient(%) 

Slope 
Gradient(%) 

Curvature 
0 15 25 47 70 90 100 

Curvature 
0 15 25 47 70 90 100 to oo convex L L L L L L L 

convex L L L L L L M planar L L L L L L M 

planar L L L L L M H concave L L L L M H H 

concave L L L M H H H 

Step oo: 

Slope 
Gradient(%) 

Curvature 
0 15 25 47 70 to oo 

convex L L L L L 

planar L L L L L 

concave L L L L L 

Step 24: 
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Table 16. 

SCIENTIFIC 
CRITERIA 

Rating scheme used to compare the management applicability of models using scientific and 
technical criteria discussed in the text. 

MODEL TESTED 

SMORPH SHALSTAB WDNR 
RATING c' = 2 kN/m2

, SOILS 
TEST CRITERIA SCHEME <ll = 33° SCREEN 

Model Comparison with landslide 
performance inventory -Type I model 0.03 0.08 0.32 

errors 

Comparison with Hazard- See text 
Potential Maps- Type I and 0.06 0.05 1 
errors Tables 8, 

10,11,12 
Comparison with Hazard-
Potential Maps- Type II 0.03 0.07 1 
errors 

Comparison of overall 
0.8 1.9 7.0 

predictive capability 

Method For greatest predictive 
limitations accuracy, does the model Yes= 0 

0 0 1 
need to be calibrated with No= 1 
field data? 

Input-variable data See Table 
0.1 0.9 1 

accessibility and adequacy 13 

Model accounts implicitly or See Table 
explicitly for spatial 

17 0.0 0.7 0.2 
variability of input variables 

Model sensitivity to changes See text, 
0.04 0.09 1 

in input variables Table 14 

Geographic Ability of model to correctly 
applicability identify slides in each of the 

following terrain types: 
······················································ ..................... ······················ ............................ ...................... 
Continental- glaciated 

0.01 0.32 0.29 
terrain 

Cascade volcanics 0.03 0.06 0.74 
See text 

NW Cascades system and Table 0.0 0.06 0.60 
8 

Olympic core rocks 0.01 0.12 0.06 

Western Olympic 
0.07 0.11 0.09 

Assemblage 

Eocene volcaniclastics 0.02 0.02 0.32 

Management Are management criteria Yes =0 
applications (L,M,H hazard) built in to No= 1 0 1 0 

the model? 

Are models available to the Yes= 0 
0 0 0 

general public? No= 1 
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Can the following persons 
run model (assuming 
access to system that can 
run programs): 

······················································ ...................... ............................ ······················ 
SCIENTIFIC Mgmt. Appl. No GIS experience 1 1 . 0 
CRITERIA 

GIS experience 0 0 0 

Are model results 
interpretable by the 
following persons?: 

······················································ ······················ ............................ ...................... 
No mass-wasting mapping 1 
experience 

Yes =0 
(existing 

1 model with 0 
No= 1 no mgmt. 

criteria) 

Mass-wasting mapping 0 
experience 

true for 
0 geomor- 0 

phologists 
and forest 

hydrologists 

Modification Can model be adjusted to 
Yes=O requirements work in all western WA. 
No= 1 0 0 1 

terrains? 

Is it essential that models 
include management criteria 
to be interpretable in the 
current following arenas?: 

······················································ ..................... ·····-················ ················-··········· ...................... 
regulatory application 1 1 1 

management application 1 1 1 
(e.g., harvest and road Yes= 1 
planning) No= o in most instances 

academic (e.g., for research 
0 0 0 and analysis) 

Can model be adjusted to 
include other key variables 

Yes =0 if topographic controls are 
No= 1 1 0 1 

not dominant in the 
watershed? 

TECHNICAL Computer run 10m OEM average 0.20 0.92 N/A 
CRITERIA time time per 

30m OEM basin 0.05 0.30 N/A 

10m OEM expected 
0.13 0.62 N/A time to 

create w. 
30m OEM WA. 

0.03 0.20 N/A 
coverage 
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Training How much training is None= 0 
requirements needed to run model Some= 1 1 1 0 (assuming basic computer (<5 hrs.) 

skills)? 

How much training (i.e., 0 =some 
office and field) is needed to (± 1 day) 

0 1 0 interpret model output? 1 =more 
(> 2 days) 

TECHNICAL Training What logistical Adequate 0 0 
CRITERIA requirements documentation exists? =0 

1 
Developed during this 

None= 1 study 

Data Can model be run with Yes= 0 requirements DEMs and/or default values 
No= 1 0 0 1 

as the only required input? 

Does model accuracy 0 0 improve with increasing 
Yes= 0 

OEM resolution? No= 1 (avg. 94% 
(avg. 60% 1 

improve-
improvement) 

men!) 

Data storage Which model uses the 1 
& retrieval biggest storage space? Bigger= 

1 
0 

(Needs- 5X 
1 

storage 
Smaller= space of 

0 SMORPH) 

Can model be run on a PC Yes= 0 
0 0 0 with ARC/INFO software? No= 1 

Can model be run on a PC Yes, with 
with non-ARC/INFO GIS? additional 

program-
ming = 1 

1 1 0 
Yes, w/o 
additional 
program-
ming = 0 

Are there potential problems 
for PC users re: data 

Yes= 1 
storage requirements for No= 0 0 0 0 
areas larger than one 
WAU? 

Are there potential problems 
for PC users re: data Yes= 1 
storage requirements for 

No= 0 0 1 1 
areas larger than several 
WAUs? 

Modification Is model adequately 
requirements documented internally (e.g., 

comment lines) for ease in Yes= 0 
1 1 N/A 

adjusting input variables, or No= 1 
externally for interpreting 
results? 
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Does model need more 
Yes= 1 

work and/or programming to No= 0 0 1 0 
adapt it for management 
use? 

TOTAL SCORE: 9.6 18.5 23.6 

101 



Table 17. Criteria used for rating scheme (Table 16.) 

TEST CRITERIA Rationale Used for Point Assignment 

"' Model Comparison with landslide Q See Table 8 
m performance inventory -Type I model errors 
z 
-1 

Comparison with Hazard- See Table 10 :;; 
0 Potential Maps- Type I errors 
0 
;:o Comparison with Hazard- See Table 11 =< m Potential Maps - Type II errors 
;:o 
> Comparison of overall predictive See Table 12 

capability 

Method For greatest predictive accuracy, 
Both of the models should be calibrated. The 

limitations does the model need to be 
SOILS data cannot be calibrated. 

calibrated with field data? 

Input-variable data accessibility See Table 13. The SOILS data cannot be 
and adequacy updated. 

Model accounts implicitly or Topographic variables explicit for SHALSTAB and 
explicitly for spatial variability of SMORPH (0 pis.), not for SOILS (1pt.). SHALSTAB 
input variables cohesion explicit (0 pt.), transmissivity, depth, phi, 

and bulk density set as constants (4 pis.); if not 
held constant, assign 0 pis. Soil properties implicit 
in SMORPH and SOILS (0 pis.). Sum total and 
divide by total number of points possible . 

. 

Model sensitivity to changes in See Table 14. The SOILS data cannot be updated, 
input variables and thus is insensitive. 

Geographic Ability of model to correctly 
applicability identify slides in each of the 

following terrain types: 
········-···········--··························-·············· .............................................................................................. 
Continental- glaciated terrain 

Cascade volcanics 

NW Cascades system 
See Table 8. 

Olympic core rocks 

Western Olympic Assemblage 

Eocene volcaniclastics 

Management Are management criteria (L,M,H SHALSTAB does not have management criteria 
applications hazard) built in to the model? set. 

Are models available to the All tested models are available to the public. 
general public? 

Can the following persons run 
model (assuming access to 
system that can run programs): 

............................................................... 
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!/) Mgmt. Appl. No GIS experience 0 
ffi The SOILS data is easy to access with no GIS z GIS experience .... experience. Both models require some GIS 
:;; experience to access and run. 
0 Are model results interpretable by 
0 the following persons?: 
::0 ............................................................... 
=l No mass-wasting mapping Experience with mass-wasting concepts is a m 
::0 experience necessary ingredient in understanding both models > outputs. The SOILS data does not require this 

Mass-wasting mapping experience. 
experience 

Modification Can model be adjusted to work in The SOILS data cannot be adjusted. 
requirements all western WA. terrains? 

Is it essential that models include 
management criteria to be 
interpretable in the current 
following arenas?: 
······························································· .............................................................................................. 
regulatory application To be useful as a regulatory tool, any model must 

have management criteria. 

management application (e.g., Most management applications would benefit from 
harvest and road planning) having criteria set. 

academic (e.g., for research and It is not necessary for criteria to be set for strictly 
analysis) academic uses of any model. 

Can model be adjusted to include The SMORPH model assumes topography controls 
other key variables if topographic landslide behavior. If this is not the case, model 
controls are not dominant in the output suffers. The SOILS data cannot be 
watershed? calibrated . 

.... Computer run 10 m DEM-time per basin Divide average number of minutes to complete a m 
0 time model run by 60. The SOILS data is a static layer 
:I: 
z 30 m DEM-time per basin and as such, it requires no time to run. 
0 
> 10 m DEM-time for western WA Divide average number of hours by 672 (number of r-
0 hours in a month). The SOILS data is a static layer 
::0 30 m DEM-time for western WA and as such, it requires no time to run. =l 
m 
::0 Training How much training is needed to Training would consist of how to access the > requirements run model (assuming basic models, determine whether the model is 

computer skills)? appropriate for the intended use, how to calibrate 
the models, and how to interpret the model results 

How much training (i.e., office Because SHALSTAB does not have management 
and field) is needed to interpret criteria, it is important to include extra training to 
model output? understand how to use that models output in the 

area of interest. Some knowledge of hydrology is 
useful. 

.... Training What logistical documentation No documentation exists for the SOILS layer m 
0 requirements exists? regarding its use as a slope stability screen. 
:I: 
z 
0 Data Can model be run with DEMs Both models can be run using a DEM and the 
> requirements and/or default values as the only default values. The SOILS layer is a static r-
0 required input? coverage and therefore does not require a OEM. 
::0 
=l Does model accuracy improve See Figure 14. The SOILS layer is a static m 
::!! with increasing OEM resolution? coverage and therefore does not require a OEM. 
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Data storage Which model uses the biggest Both models produce grid type data, that requires 
& retrieval storage space? less storage space than coverage type data, like 

SOILS. HQwever, SHALSTAB produces volumes of 
extraneous data. 

Can model be run on a PC with In addition to ARC/INFO, the PC user must also 
ARC/INFO software? have Fortran and C to run SHALSTAB. 

Can model be run on a PC with The SOILS layer is an existing coverage and does 
non-ARC/INFO GIS? not necessarily need ARC/INFO software to create 

a map. 

Are there potential problems for 
PC users re: data storage For a small area (a WAU or two), there should be 
requirements for areas larger no data storage problems. 
than one WAU? 

Are there potential problems for Because both SOILS and SHALSTAB require more 
PC users re: data storage disk space, over large areas (e.g., WRIAs), there 
requirements for areas larger may be data storage problems. 
than several WAUs? 

Modification Is model adequately documented 
None of the models tested were more than 

requirements internally (e.g., comment lines) for 
skeletally documented internally. The SOILS data 

ease in adjusting input variables, 
has no need for internal documentation, as it is not 

or externally for interpreting 
results? 

a program. 

Does model need more work 
The SHALSTAB model does not currently have 

and/or programming to adapt it 
for management use? 

management criteria. 
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Figure 2 Shaded relief maps of the basins with the most and least amount of topographic relief. Red 
lines indicate basin boundaries, white circles are landslide locations. Figure 2a is the Jordan-Boulder 
basin, with a view to the east, up the Cascade River The valleys that contain the Jordan, Boulder, and 
Irene creeks are on the right, Monogram Peak IS on the left F1gure 2b IS the Chehalis Headwaters basm, 
which has the least amount of topographic relief. The view is to the north, towards the town of Pe Ell. 



Figure 1. Index Map of western Washington. __ _ 
The inset map shows the coterminous ----·r----------------- ----------~~ 
United States with Washington state shaded. 
In the main map, the test basins used in 
this study are highlighted. County boundaries 
and some of the major cit ies of western 
Washington are shown for orientation. ~ 
Heavy lines describe the approximate 
boundaries of the major geomorphic terranes. 
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Figure 3. Comparison maps of the SHALSTAB, MWMU, SMORPH, and SOILS data for a portion of the 
Jordan-Boulder and Lewis basms. The hydrography is drawn in blue, the landslide locations are depicted 
as black polygons and circles. The lack of SOILS data in the Jordan-Boulder basin (3b, upper right) led 
to large numbers of slides having an inventoried 'no data' value. The broad-brush approach to MWMU 
mapping in the Jordan-Boulder basin led to large inclusions of the landbase into a high hazard category 
compared with the modeled output. In the Lewis basin (3a), no soils information on stability exists. The 
fine-scale approach to MWMU mapping in the Lewis basin more closely approximates the modeled 
output. In the Chehalis Headwaters basin (3c), the SOILS data is drawn with the hydrography, 
topography, and landslide inventory on the left. Much of tlte basin is in the unstable or very unstable 
SOILS categories irrespective of whether the ground is at the ridgetop, on a sideslope, or in the valley. 
The SHALSTAB and SMORPH datasets (on the nght) both show significantly less of the landbase in an 
unstable category, and the areas that are in an unstable category are all topographically based. 
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Figure 4 Orgrtal Elevatron Model (OEM) artifacts Tiling artrfacts (4a rower left) can anse when OEM data 
from different quadrangles are appended together They express themselves as false cliffs onented north­
south and east-west along quadrangle boundartes Tiling artifacts are common rn the 30m resolution data, 
but rare rn the 10m resolution data, as great care was used to remove trle artrfacts rn the finer-scale data 
Edge effects (4b, lower nght) occur along the outermost rrnd of pixels of a OEM, where the model rs not 
able to correctly rdentrfy the slope charactenstics of the edge prxels relative to its erght nearest nerghbors 
Elevation banding (4c. upper left) occurs only in the 10m resolution data, and is most noticeable in basrns 
wrth hrgh relief 



Figure 6. Comparison maps of 1Om vs 30t 
re•olutlon DEM data for a portion of the 
Jordan-Boulder basin, with streams in 
blue and landslide locations In black. 
The resolution of the DEM greatly 
influences the ability of the model to 
predict landslide prone terrain. The 
upper map is derived from tha 10m DEM. 
Note the greater ability of the 1 Om data 
to resolve small bedrock hollows and 
stream channels, where shallow landslldet 
commonly occur. 
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Figure 7. A graph of this type was used to determine 
the minimum high hazard lor calibrating 
the SMORPH model. The minimum high hazard 
slope was created at 15% of the cumuiahve 
area ollandsiidas Using this method. 
we obtain an 85% completely successful capture rate 
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F1gure 6. Map of the Lew1s bas1n 
showmg the SOl LS compared to 
the MWMU mformat1on The 
outline of the bas1n and 
landslides are drawn 1n black 
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SMORPH Model Predictions SHALST AB Model Predictions · SHALSTAB 
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Figure 10. Map of tt>e .Jordan-Bouldw ba81n 
with SMOAI"H plotted againet SHALSTAB uelng 
management ortterla. In order to dl,..,tty 
compara mode .. , the 8HALSTAB modal output 
- oat.gorlzad Into high. modarat., and 
low t.az-d. The.,_. within th-
oatagorJ.. _,. tMn compared with tho•e 
of SMOAI"H, which output~~ management 
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Figure 11. Histograms of the categorized 
SMORPH and SHAlST AB landslide values. Using I he 
management criteria oulined In Table 7, the 
modelled values were categorized Into three bins: 
0 (landslide occurring in a high hazard area), 
1 (landslide occuring in a·maderate hazard area), 
and 2 {landslide occurring in a low hazard area) . 
These categorized values were then summed and provide 
the basis for one of the comparative tests of 
each models predictive ability 
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Figure 12. Cumulative percent change in the number of correctly and incorrectly predicted 
landslides for: (1) increasing effective cohesions (c' = kN/m2

) input to the 
SHALSTAB model; and, (2) increasing gradient-threshold values (S = %) input to 
the SMORPH model. This graph permits visual comparison of the relative 
sensitivities of the models when the value of input variables is changed. 
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Figure 13. Graph shows that as cohesion Increases 
more of the landbase becomes stable, unlll at cohesions 
of eight or greater, all ground becomes stable. The number 
associated wilh each line Is the cohesion when phi is set 
to 33 degrees. The dotted line Is where the cohesion Is 
set to zero and the phi Is set to 45 degrees. This graph 
shows that using e phi ol 45 and a cohesion of zero Is less 
conse/Vallve than using a cohesion of 2 and a phi of 33 
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