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EXECUTIVE SUMMARY -
Project Purpose

The need for testing and improving GIS-based slope stability models, for use in forest
management and forest-practices regulations, has been identified by the Timber/Fish/Wildlife
(T/F/W) Cooperative Monitoring, Evaluation, and Research (CMER) Committee and the newly
released Forests and Fish Report to the Washington Forest Practices Board (WFPB) and the
Governor’s Salmon Recovery Office (USDI Fish and Wildlife Service et al., 1999). The original
T/F/W agreement (1987, p. 31) called for “... moving toward a hazard zonation mapping system
to better identify areas of instability”, and efforts began soon thereafter to design mapping
systems, both manual and GIS-based, for screening shallow landslides. Likewise, the Forests
and Fish Report has called for “a project to identify the best available topo/geographic model to
flag landforms that have significant potential to initiate shallow rapid landsiides” (p. 37), in
anticipation of the completiron of the study described herein.

Over the past eight years, CMER has funded or partially funded research to develop
GIS-based models. These models, however, have not been tested rigorously or adapted for
statewide application {o management and regulation of commercial forest lands in Washington.
Consequently, the CMER Committee recommended, and the T/F/W Policy Committee
approved, Project 10 (“Erosion Effects from Forest Practices”) for the 1997-99 biennium, the
primary intents of which were to:

(1) evaluate the performance of GIS-based slope-stability models that are readily available and
have been developed with support from T/F/W and its cooperators;

(2) seiect one or more models that meet stated criteria for scientific accuracy, technical
accessibility, and applicability to forest management and regulation in Washington; and,

(3) further refine the selected model(s) and make recommendations to the T/F/W community
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regarding its/their use as a screening tool, particularly where regulatory watershed

anralyses or landsiide inventories have not been completed.
Model implementation would be promoted by making software and documentation available to
all T/FW cooperators, or by creating a publicly accessed,r regional {andslide screen to replace
the current WDNR-GIS slope-stability iayer.

In May 1998, we contracted with the CMER Committe-e and the Washington Forest
Protection Association (WFPA) to carry out Project 10. This technical report and accompanying

recommendations describe the methods, results, and conclusions of our year-long analysis.

We thank the T/F/W group, WFPA, and Washington Department of Natural Resources (WDNR}

for their generous support of this project.

During the course of this study, our focus expanded from evaluating models for use in
regulatory watershed analyses and routine forest management, to include an assessment of
their potential as statewide landslide-screening tools. This shift was driven primarily by the
Forestry Module negotiations and the resulting commitments of the Forests and Fish Report to
promote the development of a statewide screen. Hence, we provide recommendations for
model use at the local and regional scales. This project has focused on western Washington,
due primarily to time constraints. Consequently, we are developing a similar test for
watersheds in each of the distinct geomorphic provinces in eastern Washington, as groundwork
for creating a statewide screen of shallow landsliding. This test should help determine whether
any of these GiS-based models can accommodate the geology and climatic regimes east of the

Cascades Range.

Summary of Study Methods and Report Conclusions
We evaluated three shallow-landslide predictive metheds that have been used
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previously in Washington forest management and regulation: the current WDNR-GIS slope-
stability screen (referred to in this report as the SOILS screen; tested at the request of CMER
Committee members); the SMORPH or DNR-SL model (Shaw and Johnson, 1995), and the
SHALSTAB model (Montgomery and Dietrich, 1994). We originally proposed to test the WHPM
model (Wu and Abdel-Latif, 1995, 1997); however, this model has not been fully developed énd _
programmed by the authors and, hence, was unavailable during the course of this study. Other
published models (e.g., Wu and Sidle, 1995; Pack et al., 1998) also were not tested fully due to
availability and software-development issues.

We tested the three selected models in eight watersheds (i.e., nine Watershed
Administrative Units (WAUSs) and portions of four others), representing the major geomorphic
provinces of western Washington (see Figure 1 in the Technical Report) and incorporating 2524
known, existing shallow landslides. The test was conducted by executing the mode! programs,
creating GIS covers from model results, comparing them statistically with landslide inventories
and hazard-zonation maps produced for this project or as products of regulatory watershed
analyses, and verifying model predictive accuracy in the ﬁéld_

For maximum test accuracy, we found that we had to verify and update most of the
landslide inventories in the field, and make corrections or additions to the digital databases (i.e.,
we encountered problems with the watershed-analysis GIS products). We also modified the
SHALSTAB program, with assistance from one of the authors and staff, such that it functioned
correctly on the WDNR UNIX computer system. In addition, we needed to create a method for
converting SHALSTAB model output, given as critical rainfall amounts necessary to initiate
landslides (in mm/day), to management criteria {i.e., low, moderate, and high “hazard”
potentials) in order to compare the model results with those of the SOILS screen and SMORPH
model. The latter two models yield results in terms of management criteria, as defined by
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WFPB regulations:. White conducting this study, we developed some additional
documentation and computer help tools that will improve the “user-friendliness” of the SMORPH
and SHALSTAB models. This documentation, as well as the algorithm for converting
SHALSTAB output, are available by obtaining copies of the computer programs from the
WDNR.

Based on statistical comparisons of model results and existing landslide data, we have
concluded the following regarding the management applicability of these models:

(1) The SMORPH model generated spatial predictions of shallow landslides that correlated
most closely with the pattern of known, existing landslides (i.e., landslide inventofy
databases} and the landslide hazard-potential maps (e.g., Mass-Wasting Map Unit
maps from regulatory watershed analysis). This model correctly predicted 97% of the
total existing landslides, compared with 2% for the SHALSTAB mode! and 68% for the
SOILS screen. Compared with the landslide hazard-potential maps, the SHALSTAB
model over-predicted by an average 7% the area considered to be *high hazard”,
whereas the SMORPH model similarly over-predicted by an average 3%. The
SMORPH model also performed substantially better than the other models in the least
appropriate terrain for GIS-based model applications (i.e., continental glaciated basins).

(2) Using the landslide databases as a measure, the difference in predictive capability of the
SMORPH and SHALSTAB models appears to be marginally significant statistically,
whereas the difference between either of these models and the SOILS screen is very
significant. Hence, SMORPH and SHALSTAB agree fairly well with observed landslide
distributions and either conceivably could be developed to produce a regional or
statewide GIS cover of shallow landslide potential, contingent on their calibration needs.

(3) The SHALSTAB model is less readily applicable in the current management decision-
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making framework because it contains no mechanism for converting model output to
management criteria (i.e., low, moderate, high “hazard” potentiai). Hencé, using this
mode! in a watershed-analysis or regulatory context (e.g., creating a statewide cover)
would require that the model authors create an algorithm or verify that the one we
created is acceptable. Our conversion algorithm was designed to yield the most
conservative estimate of slope instability and reproduce most closely the spatial
distribution of existing landslides, so we believe that it is a viable approach to solving
this application problem. We estimate that it would take the model authors at least three
months of concerted effort to make these and other desirable mode! modifications {(e.g.,
addressing model calibration issues on a statewide level).

(4) The SOILS screen is the least preferable option for management applications because of its
comparative inaccuracy, the inability of the user to calibrate mode! input variables to
site-specific physical conditions, and the large gaps in geographic coverage due to lack
of comprehensive, digital soils-survey data. The SOILS screen is relatively more “user-
friendly” than the other models because it is delivered to the user as a pre-compiled GIS
cover. Contingent on further testing in eastern Washington, either SHALSTAB or
SMORPH programs could be executed to vield a statewide cover that would alleviate
the need for individual users to run the model.- A new cover could be made available in
the pu.blic domain by the WDNR.

(5) The SHALSTAB modei contains more input variables than SMORPH and, consequently,
has the potential for producing relatively more model errors associated with using input
values that are unrepresentative of the study area. The soil-property and hydrology
input variables are assigned constant values in the model. Few published methods exist
for determining appropﬁate constant values for soil properties that can vary considerably
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in space and time. Collecting sufficient data in the field also can be problematic.
Reasonable values potentiaily can be back-calculated by running the model with a range
of possible values and choosing ones that yield landslide predictions most comparable
with existing landslide databases. This approach might be less labor-intensive than field
sampling but requires reliable landslide inventories in a sufficient number of
representative watersheds that the calibrated values can be extrapolated o basins
without inventories. This calibration might hinder the speedy development of a
statewide GIS cover and could inhibit the use of this model in watersheds with no viable

analogs (e.g., geomorphically similar watersheds with completed inventories).

(6) The SMORPH model contains relatively fewer input variables (i.e., management criteria for

different combinations of hillslope gradient and curvature), relying on the assumpticn
that topographic factors primarily drive landslide initiation. Gradient threshold values
corresponding to each criterion (i.e., low, moderate, high “hazard”) are set using existing
landslide inventories and/or hazard-zonation maps from geomorphically similar
watersheds. Hence, this model aiso requires calibration and suffers correspondingly
when no viable analogs exist. We found that the SMORPH model is relatively less
sensitive to variations in the gradient thresholds than SHALSTAB is to variations in soil-
property values (i.e., magnitudes of the estimated soil cohesion and internal friction
angles). As a result, SMORPH likely can accommodate somewhat greater error in the
choice of input values than SHALSTAB. In addition, gradient data are more readily
accessible than soil-property information; the former can be derived from landslide
inventories and topographic or DEM maps, whereas the latter are obtained from field

measurements or from soil surveys and geoengineering literature.

(7) The SMORPH model, in its present form, cannot be adjusted fo include site-specific soils
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and hydrology data. Hence, the model might not function as well in regions where
topographic factors are secondary to other hillslope processes. The same is true of
SHALSTAB in its present form because it also assumes topographic forcing of

- landslides. Alternatively, the SHALSTAB mode! contains placeholders for algorithms
that treat variability of soil properties (i.e., substituting computational routines for the
constants) and, hence, eventually could prove to be more robust and versatile when
such algorithms are added. With respect to western Washington, the comparatively
better predictive qapability of the SMORPH model suggests that including algorithms for
soil and hydrologic factors might not be as critical as medeling the fine-scale variations
in topography. This result also implies that, for western Washington, the values of input
variables required in the SHALSTAB model might be adequately represented by defauit

values currently set in the computer program.

(8) The SMORPH model runs approximately 80% faster than SHALSTAB on a computer

workstation (e.g., WDNR UNIX system), which might be important to managers with
limited computer resources and large data requirements. SMORPH also requires about
five times less data-storage volume than SHALSTAB and several times less storage

volume than the existing SOILS screen.

(9) The SHALSTAB model requires relatively more training to instruct users on executing model

programs and interpreting results. The assistance of technical specialists also might be
needed more frequently than with other models, to calibrate input variables and interpret
model results, particularly if no uniform method exists for converting modet output to

management criteria.

{10) Both SHALSTAB and SMORPH perform significantly better using 10-m. versus 30-m.

resolution DEM data. Hence, the finer-resolution data should be used wherever

7



possible. Computer programs for both models can be run using default values of the ‘
input variables, if time and/or budget precludes more lengthy calibration efforts, although

the model results vary accordingly.

Recommendations for Model Adoption as a Landslide Screening Tool

Based on the conclusions presented in this summary and the technical report, we offer
the following options for selecting a preferred model as a screening tool for shallow iandslides.
As summarized previously, the SOILS screen was determined to be the least preferable based
on its predictive capability and, hence, is not offered here as an option. These
recommendations are the same regardless of whether the model is employed at a watershed
scale (e.g., for forest-practices-application reviews, timber-harvest planning, and preliminary

hazard-zonation mapping) or at a regional scale (e.g., for creating a statewide or regional GIS

cover).

OPTION 1:  Choose the SMORPH model as the preferred screening tool.
The advantages qf this option are that the SMORPH model performs slightly better than
the current version of the SHALSTAB model and yields results that are consistent with
observed landslide data. Its output is given in terms of management criteria (i.e., iow,
moderate, and high “hazard” potential) that are commensurate with the regulatory
definitions and management decision-making process. SMORPH requires relatively
less calibration, with readily available input data. This mode! could be incorporated with
other model algorithms that address additional key factors known to influence
landsiiding (e.g., soil properties). The program runs substantially faster, requires less
storage space, and can be implemented with less training and technical assistance.
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This model has been used by a variety of private, state, and federal entities in the
Pacific Northwest to create preliminary screens of landslide potential. It can be readily
implemented, although additional testing should be conducted in eastern Washington to
assure that it performs accurately in terrain less comparable to watersheds analyzed on
the west side. We estimate that a statewide GIS cover could be developed within a few

months in western Washington and in about nine months for eastern Washington.

OPTION 2: Choose the SHALSTAB model as the preferred screening tool.

The advantages of this option are that the SHALSTAB mode! performs nearly as well as
the SMORPH model and yields results that are consistent with observed landslide
inventories, if our algorithm is used to convert output data to management criteria. This
mode! potentially offers more versatility in terrains where topographic controls are
confounded by spatial and temporal variations in soil and hydrologic variables, although
algorithms to address such variability have not been made available. The SHALSTAB
model could be adapted for management and regulatory use if the output conversion
algorithm used in this study were refined, replaced, or cbrroborated by the model
authors. Whereas using the model in the current regulatory arena would require
establishing management criteria, its use by analysts in watershed analysis would not
necessarily depend on these criteria, given that the standard output (i.e., critical rainfall
values) can be interpreied by scientific specialists. We expect that model! modiﬁcations
(e.g., refining management criteria) would take a number of months and potentially
require funding of the authors to complete. The model requires a fair amount of
calibrating with existing landslide databases or soil and precipitation data. This test,
however, suggests that using the default values of the input variables is reasonable for
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western Washington terrains similar to those tested in this study. Although the model ‘
program is relatively less time- and storage- efficient, it nevertheless could be run,
perhaps in a series of smaller geographic areas, to create a regional or statewide cover.
This model requires relatively more training and assistance from technical specialists,
especially in calibrating input variables and interpreting results. The SHALSTAB modei
or its variations have been used by several privaté, federal, and academic entities to
produce GIS covers of landslide potential in its native units of measure (i.e., to our
knowledge, no uniform method exists for interpreting results in a management context).
It could be used to build a statewide GIS cover, pending refinement of management
criteria and further testing in eastern Washington. We estimate that it might take about
one year to develop a statewide cover, using the management criteria presented in this
study, and potentially longer if other criteria need to be developed. Model modifications
would be subject to funding and availability of the model authors, which could influence
the completion of a statewide cover by December 2000 (i.e., anticipated deadiline for

implementation of the Forests and Fish Report).

OPTION 3: Choose the SMORPH model as an interim tool while the SHALSTAB model is

being further developed and tested.
This option accommodates the needs of implementing a reliable statewide GIS cover by
December 2000, while allowing for further development and testing of the SHALSTAB
model. The SHALSTAB model is more sophisticated, although in its current version
(i.e., with variables held constant), it is reduced to its most essential element (i.e., a
topographic analysis). Hence, there currently is little functional difference between the
current SMORPH and SHALSTAB models. This option basically takes care of the
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present needs while exploring potential advantages of a more complex model. The
disadvantage of this option wouid be the time and money spent developing two GIS
coverages. Switching from one model to the other in mid-stream, however, would not
necessarily affect users because one coverage could be substituted for another, as long

as the management criteria were defined similarly.

OPTION 4: Choose the SMORPH model as an interim tool while other promising models are

being refined.
This option is similar to Option 3, although SHALSTAB would be replaced in favor of one
of several other promising, GIS-based models. The advantages of these models are
summarized in the Technical Report. One such method, currently being developed and
tested by the USDA Forest Service and its cooperators in Oregon, couples a variation of
the SHALSTAB model with a debris-flow-runout algorithm, to assess not only the spatial
distribution of predicted shallow landslides but the “deliverability” of landslide materials
to downstream areas with sensitive public resources (D. Miller, Earth Systems Institute,
pers. comm.). Hence, this option considers the possibility that more advanced tools

would be available in the near future.

We have been asked by members of the CMER Committee to recommend a preferred

option. We have selected Option 1. The deciding factors for us were the slightly greater

predictive capability of SMORPH, despite the conceptual simplicity of the model, and the

immediate accessibility of the operating program to users with a basic knowledge of GIS and

mass-wasting mapping techniques (i.e., it does not require any modifications to be

implemented). In addition, this model contains fewer variables that need to be calibrated for the
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watershed of interest, it runs faster, and it yields output in terms of decision-making criteria thét
cur.rently are being used in the Washington forest-management arena.

We recognize, however, that a GIS screen built with one model could be replaced
relatively easily with another, as science and technology advance and better methods are
developed (i.e., “adaptive management” in the GIS world)._ Hence, Option 3 runs a close
second, in our estimation. We strongly support the concept of making both models available
and implementable, given that each offers some important potential advantages.

Regardless of which model is chosen, we recommend that both SMORPH and
SHALSTAB be simultaneously tested and refined for use in eastern Washington, prior to
implementing a statewide GIS cover. The possibility exists that one model could perform
significantly better than the other in certain types of terrain. To our knowledge, neither model
has been analyzed in terms of its applicability to eastern Washington watersheds. Testing both
models simuitaneously would not cause delay in creating a statewide coverage because the

requisite diagnostic test methods have been established as part of this project.
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TECHNICAL REPORT

Comparison of GIS-based Models of Shallow Landsliding for Application to Watershed
Management

Susan C. Shaw and Laura M. Vaugeois
Washington Department of Natural Resources
Forest Practices Division

P.O. Box 47012
Olympia, WA. 98504-7012

1.0 Introduction

Land managers and regulators in the Pacific Northwest historically have possessed
limited means for evaluating landslide potential where land-management activities are
proposed. Existing information on site characteristics and failure potential typically has been
confined to small geographic areas (e.g., 20 km? or less) in which landslide inventories,
geomorphic research, or semi-empirical stability analyses have been conducted. More
recently, private landowners and natural-resource agencies in Washington State have initiated
a regulatory form of watershed analysis (Washington Forest Practices Board, 1995) for specific
landscape units (i.e., Watershed Administrative Units (WAUSs), usually less than 200 km? or 78
mi? in size), in which landslide inventories are developed largely with the aid of aerial
photographs and limited field reconnaissance. Landslide assessments in only about 60 of the
764 Watershed Administrative Units, however, have been finalized and approved by the state
during the last seven years (Washington Depariment of Natural Resources (WDNRY), 1999).
Furthermore, incomplete and often imprecisely mapped state soil surveys and their slope-failure
ratings still constitute the main source of information used by state regulatory foresters to

evaluate management proposals in areas outside of those where reliable landslide
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assessments have been performed.

in recognition of these and other management needs for improved methods of
identifying landslide sites in Washington State, the Washington Forest Practices Board (WFPB)
and Governor's Salmon Recovery Office recently adopted new measures for forest-
management activities that include the use of a GIS (Geographic Information System) -based |
topographic mode! as a statewide screen for predicting potential unstable slopes (USDI Fish
and Wildlife Service et al., 1999). GIS-driven models, using digital elevation model (DEM) data,
typically combine empirical and theoretical methods for evaluating the relative role of
topographic control (e.g., gradient and slope form) on initiating shallow landslides (e.g.,
Montgomery and Dietrich, 1894; Shaw and Johnson, 1995; Wu and Sidle, 1995; Wu and Abdel-
Latif, 1997; Pack et al. 1998; D. Miller, Earth Systems Institute, pers. comm.). Depending on
the model used, output can vary from spatial distributions of steady-state rainfall predicted to
cause slope instability (e.g., Montgomery and Dietrich, 1994), to landslide-hazard potential
based on factors of séfety (e.g., Wu and Abdel-Latif, 1997), to landslide-hazard rankings based
on management criteria defined by the WFPB (e.g., Shaw and Johnson, 1985). These maps
can be useful to managers for screening potential landslide areas and determining where land-
use or habitat-restoration activities should be concentrated, to regulators as a replacement to
the soil surveys for assigning forest-practices class designations (i.e., determining whether
environmental checklists or impact statements are required), and to analysts for developing
preliminary hazard-zonation maps that reflect initial hypotheses regarding the location and
density of shallow landslides. Isolated tests of GIS-based models in the Pacific Northwest have
suggested that preliminary landslide-failure or hazard-zonations maps can provide more
accurate slope-stability information than customarily can be interpreted from topographic,
geologic, or soil maps alone (e.g., Shaw and Johnson, 1995; Montgomery et al., 1998).

14




In this paper, we present the results of a comparative test of GIS-based models of
shallow landsliding for use in a management context. This test was conducted under contract
to the Washington Timber/Fish/Wildlife (T/F/W) Program (i.e., a cooperative group of
regulatory, tribal, environmental, and industrial sponsors who collectively makes
recommendations to the WFPB on matters related to forest management; T/FAW, 1992) and
Washington Forest Protection Association (WFPA), as a precursor to developing the statewide
slope-stability screen required by the WFPB. For the purposes of comparison, we use data on
existing and potential shallow landslide sites from eight watersheds in western Washington (i.e.,
west of the Cascades Range crest) to examine the ability of each model to predict the spatial
distribution of shallow landslides. A similar test currently is being developed for watersheds in
each of the distinct geomorphic provinces in eastern Washington, as groundwaork for creating a
statewide screen of shallow landsliding. In addition to évaluating method accuracy and
limitations, we discuss management applicability and several technical criteria important in

making models accessible to natural-resource managers and technicians.

2.0 Description of Test Models

Three GIS-driven models have been selected for this evaluation, based on their current
availability, potential for adaptation to management decision-making, and/or use by T/F/W
cooperators'in field applications or previous tests of model performance. They are the current
statewide soil-stability screen, maintained by the WDNR and herein labeled SOILS; the shallow
landslide model of Montgomery and Dietrich (1994), nicknamed SHALSTAB by its authors; and
the shallow landslide model of Shaw and Johnson (1995), herein referred to as SMORPH.

The three selected models have a humber of elements in common. They use
geographic information systems (G1S) to couple DEM data with assumptions regarding
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topographic attributes that influence slope destabilization and with algorithms for calculating
slope stability. Whereas the SHALSTAB and SMORPH models assume that topographic relief
(i.e., hillslope gradient) and form (i.e., slope curvature) are the principal driving factors in
promoting shallow landslides, the SOILS screen assumes that only gradient is a critical
variable. These assumptions derive from previous studies suggesting that shallow landslides
occur most often above a threshold gradient and in topographic convergences where shallow
subsurface flow concentrates, such as hollows and channelized depressions, with consequent
effects on soil moisture and strength (e.g., Dietrich and Dunne, 1978; Swanson et al., 1981;
Swanson and Fredriksen, 1982; Sidle et al., 1985; Montgomery and Dietrich, 1994). This
simplifying assumption permits a number of key slope-stability factors to be treated implicitly,
including substrate type, bedrock structure, rainfall duration and intensity, soil depth, soil

conductivity and strength, plant transpiration, root strength, and subsurface drainage properties.

In addition, each model is limited similarly by the accuracy of the DEM data; that is,
these models are only as good as the DEMs on which they are based. Much of western
Washington is mapped with DEMs at a 10-meter resolution. For regions in which DEMs are
available only on a 30-meter grid, however, all models suffer cerrespondingly in their precision
and accuracy, as discussed in section 3.2 of this paper.

The three model differ primarily in the sophistication with which independent physical
parameters affecting slope stability are addressed. The SOILS screen relies on hiilsiope -
gradient and soil type to rate siope-stability potential (WDNR, 1988). The SMORPH model
explicitly treats gradient and slope curvature, while the SHALSTAB model treats these
topographic attributes as well as several key soil physical and hydrological properties. From
the standpoint of practical application, there are advantages and disadvantages to each
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approach. Simpler models in which key influencing factors are treated implicitly can be
employed readily (i.e., with little to no data collection) and for larger geographic areas. The
level of site-specific accuracy, however, might be reduced by assuming static or invariant
hydrologic and geomorphic conditions, and by extrapolating local data on soil and hydrologic
properties to the basin or regional scale. The advantage of explicitly treating parameters such
as rainfall, subsurface hydrology, and soil properties is that the model might identify patterns of
potentially unstable ground at a higher resolution. Consequently, such models are usefui for
predicting site conditions in the local area for which the input data apply. Conversely,
employing local data might limit the ability of the model to predict accurately the spatial
distribution of unstable slopes at a landscape scale. This approach also requires considerably
more data collection in the field. Some factors, for example subsurface hydrologic and soil
strength properties, might be very difficult to analyze and measure due to their spatial and
temporal variations and their complex physical interactions.

The following paper sections summarize the salient features of the three test methods,
in order of relative sophistication, and current knowledge of the authors regarding their

application to forest management.

21 SOILS screen

This GIS cover, created by WNDR staff in 1988, expresses for each DEM cell, the
relative potential for slope destabilization (i.e., low, medium, high, very high potential for shallow
landsliding). It is based on the state soil survey classifications of soil type as stable, unstable,
or very unstable (WDNR, 1984) and differentiation between steeper slopes (30% to 65%) and
less steep slopes (less than 30%). For example, soil mapping units are rated as having low
potential if they are classed as stable soils and fall on hillslopes with maximum gradients of
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30%. Soil mapping units are assigned a very high mass-wasting potential if they are classed és
unstable soils and fall on hillslopes greater than 65% (Table 1).

The SOILS screen was built as a GIS cover for Washington State in 1988 and has been
used since that time in a variety of management contexts, including timber harvest planning by
private landowners and state-land managers. The SOILS screen remains the primary database
used by state regulators in evaluating the slope-stability potential of areas for which forest

practices have been proposed. It is available in the public domain on the WDNR-GIS system.

2.2 SMORPH model

The SMORPH model outputs, for each DEM cell, the relative potential for shallow
landsliding in terms of hazard ratings of low, moderate, and high (Shaw and Johnson, 1995).
This model assumes that hillslope gradient and form are the primary driving factors for shallow
landslides and that other critical influencing factors are treated implicitly by calibrating the model
with observed landslide densities. For example, it assumes that the greatest density of
landslides occurs on steeper, more convergent slopes; hence, a high hazard rating is given to
slope segments with the largest area of unstable ground per unit basin area. The model
combines an analysis of digital elevation models with an empirical algorithm that expresses
stahility classes on the basis of measured |landslide densities, as obtained from mass-wasting
7 inventories in terrain with similar geologic, climatic, hydrologic, and vegetative regimes.
Required model inputs are DEM data and a histogram of slope gradient versus density of
shallow landsliding for the geographic area of interest. The model is used most effectively to
extrapolate from areas with mapped landslides o those with little or no landslide data.

A modified version of the Arc/Info'™ GRID curvature tool (Environmental Systems
Research Institute (ESR1), 1992) is used to evaluate slope gradient and form (planar, concave,
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convex), and a siope-morphology matrix is formed by the union of gradient and curvature
(Table 2). This tool calculates the curvature of a surface at each cell center of a DEM grid, by
evaluating hillslope gradient, aspect, planform curvature (i.é., measured transverse to slope
direction and influences subsurface flow concentration or dispersal), and profile curvature (i.e.,
measured normal to slope direction and governs flow acceleration and deceleration). The
mathematical derivation of curvature used in the ESRI package is developed by Zevenbergen
and Thorne (1987), in which curvature is given as the divergence of the gradient, or the
LaPlacian of the topographic surface, Z, as described by a fourth-order polynomial of the form:
Curvature = V?Z = V3(Ax%y? + Bx®y + Cxy? + Dx* + Ey? + Fxy + Gx + Hy + |). [1]
The 9 elevations of a 3x3 matrix of surface cells are used to calculate parameters A through L.
Matrix elements are assigned management hazard calls of low, moderate, and high based on
criteria defined in the landslide inventory used to calibrate the model {e.g., hazard ratings |
assigned by the analyst during watershed analysis). Hence, model output comprises a
preliminary hazard-zonation map, with DEM-scale resolution, that ¢an be used in management
decision-making or as a tool for planning a thorough field investigation of landslides.

This model was created specifically as a preliminary screening tool for field foresters
and managers to use in landscape and timber-sale planning (Hoh Tribe and WDNR, 1993). It
has been tested fairly extensively on the Olympic Peninsula (Shaw and Johnson, 1985) and
less rigorously by other T/F/W cooperators elsewhere in the state. This model also was
employed in an economic analysis of the habitat conservation plan for state-managed lands in
western Washington (WDNR et al., 1997), to estimate the percentage of watershed areas that
could be classified as having potentially unstable ground. Several model versions also have
been distributed to government agencies and private timber companies in five western states;
to date, however, no test results have been reported in a statistically meaningful manner.
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SMORPH is available to the public from the WDNR:

2.3 SHALSTAB model

The SHALSTAB model outputs, for each DEM cell, the relative potential for shaliow
landsiiding in terms of steady-state rainfall required to fully saturate the soil mass (Montéomery
and Dietrich, 1994). It couples DEM data and a planar infinite-slope stability model with a
hydrologic model (TOPOG; O'Loughlin, 1986) that predicts near-surface throughflow in
topographic elements identified by the intersection of topographic contours. Critical rainfall, Q.

necessary to saturate soils and initiate soil movement is expressed as:
Q. = Tsind (a/b)”’ [c’(pwgz cos0 tand)”! + (p,/p,)(1- tanBitand)] [21

where T is the depth-integrated soil transmissivity, 9 is the local slope, a is the upsiope
contributing area, b is the slope length across which subsurface flow is accounted for, ¢’ is the
effective soil cohesion as governed by root strength, p,, is the bulk density of water, g is
gravitational acceleration, z is soil thickness, ¢ is the internal angie of friction of the soil, and p,
is the bulk density of the soil (see Montgomery et al., 1998; their equation 5a).

This model calculates a numerical value of Q required to cause landsliding for ea_lch
DEM cell. Analogous to the factor of safety, Q, values are assigned a slope-stability risk factor
(i.e., unconditionally stable, unstable, stable, and unconditionally stable; Table 3). DEM cells
are classified as unconditionally stable when they occupy fully saturated soils on slopes less
than some value that is dependent on the soil friction angle and bulk density specified in the
model (e.g., $ = 33°, p, = 2000 kg/m® in model tests described in Montgomery et al., 1998):
tan@ < tand [1 - (p/p.)] . Conversely, DEM cells are designated unconditionally unstable when

soils are dry and slopes are greater than the gradient threshold value: tan > tan¢. For
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practical applications in which a hazard-potential rating is desired, the user must translate these
stability terms into management criteria (e.g., low, moderate, high) based on an empirical
knowledge of instability or other diagnostic criteria. In this paper, we offer one option for
creating management criteria from model output.

Most model applications that have been published to date (Montgomery and Dietrich,
1994; Montgomery et al., 1998) have held soil properties and hydrologic variables constant (i.e.-,
soil depth, internal angle of fric’tion, and transmissivity, and effective soil cchesion; see paper
section 3.3 for additional discussion). This method reduces the functional elements of the
model to those related to topography (i.e., gradient and curvature) and area (i.e., contributing
area upslope of each topographic element).

Model results have been compared by the authors with landsiide inventory maps for
small coastal catchments in northern California, central Oregon, and the western Olympic
Peninsula (Montgomery and Dietrich, 1994). In addition, Montgomery et al. (1998) have tested
model performance in 14 watersheds for which landslide inventories have been compiled.
SHALSTAB is available from the authors and at the Internet Web site of the University of

Washington.

2.4 Other models not selected for this study

A number of other models were considered but not chosen for this comparative test
because of availability and software-development issues. They include shallow landslide
models of Wu and Sidle (1995), Wu and Abdel-Latif (1995, 1997), Pack et al. (1998), and
(Earth Systems Institute, pers. comm.). Other methods were too site-specific to be applied over
large geographic areas, as required of a watershed analysis or statewide landslide screen (e.g.,
LISA and DLISA; Hammond et al., 1992). For a general review of analytical methods other
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than GIS-based modeling, see literature reviews in papers by Montgomery and Dietrich (1994j
and Wu and Sidle (1995).

Although not available or testable in their current form, these models show promise for
future management applications, in that they explicitly treat a number of the problematic spatial
and temporal distributions in critical slope-stability factors. Better physical characterizations of
these factors could improve predictive capability of GIS modelling techniques beyond those
employed currently in SHALSTAB and SMORPH. Any of these models reasonably could be
developed as a GIS slope-stability cover should they prove in future to yield more accurate
predictions of landslide potential. Similar to SHALSTAB, several of these models (e.g., Wu and
Sidle, 1995; Wu and Abdel-Latif, 1997) would require an additional algorithm that instructs the
user on transiating model output into management criteria (e.g., low, moderate, high hazard).
These models are summarized in subsequent paragraphls, to illustrate their similarities énd
dissimilarities with the modéls used in this &omparative test (i.e., SHALSTAB and SMORPH).

The dSLAM model (Wu and Sidle, 1995) currently is not available for public use and,
hence, could not be evaluated fully. It couples DEM data with a planar infinite-slope stability
model, a hydrologic algorithm that simulates groundwater movement as kinematic waves
through topographic elements similar to those constructed in the SHALSTAB model, and an
algorithm that explicitly characterizes root strength. Whereas contributing rainfall is treated as
steady-state in the SHALSTAB model, this model can accommodate spatially constant but
temporaII;/ varying rainfall input (i.e., single 6r muitiple storm events). Hence, the model must
calculate a factor of safety in time steps to simulate the measured rainfall patterns. The model
requires as input site-specific data on soil properties, vegetation type and age, and individual
storm hyetographs (e.g., actual or simulated). Consequently, this model is computationally
more complex and labor-intensive than the SHALSTAB model. Outputs of these model
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simulations are shown as landslide and debris-flow=path location maps, factor-of-safety
distributions, and distributions of failure (i.e., hazard) potential. Management criteria (i.e., low,
moderate, high “hazard”) must be assigned by the user based on iocal knowledge. The dSLAM
model has been evaluated by the authors on its ability to reproduce physical characteristics of
measured landslides in a small tributary drainage in the Oregon Coast Range.

The shallow landslide mode! of Wu and Abdel-Latif (1895, 1897) currently is not
programmed to run on one operating system (T.H. Wu, pers. commun.) and, hence, was not
accessible for the purposes of comparing GIS models in the Arc/Info'™ environment without
édditional programming work. This model operates similarly to SHALSTAB, by calculating
water-table heights in hillslope elements based on DEM data, and applying them to infinite-
slope calculations of factors-of-safety. The slope units in which the water-table heights are
derived can be of varying size and are chosen by Microlmage MIPS (Map and Image
Processing System). The.hydrologic model component (Wu et al., 1993) is based on a lumped-
parameter, kinematic storage model using a first-order, second-moment approach to alfow for
stochastic soil-hydrologic properties (Reddi and Wu, 1991), in which the mean and variance of
model output are determined from the mean and variance of model input. Rainfall and/or
snowmelt is used to generate piezometric levels of corresponding recurrence intervals. The
piezometric input is added to soil-strength properties to generate probabilities of failure for each
slope element. Model output is a map showing ranges of failure probabilities (e.g., <0.01, 0.01-
0.05, 0.05-0.10, =0.10) for water inputs of a given recurrence interval. Such maps can be
improved by using smaller slope elements, more data on soil properties, and updating with
empirical landslide information. This model has been used to generate hazard maps for two
USGS 7.5' quadrangles in Lewis County, Washington, and compared with landslide maps of
that area generated by Dragovich and Brunengo (1995).
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The SINMAP model of Pack et al. (1998) is freely available on the Internet. We were ‘
not able to resolve with the authors a potential problem with the hydrologic component of the
model during the course of this study and, hence, could not complete a test of model
performance. This model is operated in GIS ArcView and couples the infinite-slope model with
a topographically based, steady-state, hydrology model. The model requires no input data for
soil, vegetation, and geologic factors known to influence slope stability; rather, these critical
parameters are modeled as uniform distributions between empirically derived limits. The user
may “pick” appropriate values for a specified watershed based on the ability of the resulting
output to “capture” a high proportion of observed landslides and minimize the number of
incorrectly identified sites (i.e., areas in which no landslides have been observed). Hence,
model calibration requires the use of landslide inventory data, simiiar {o the SMORPH model.
Slope stability classes (e.g., low, moderate, high) are assigned based on a slope plot of
landslide and non-landslide points.

The shallow-landslide prediction method of Miller (Earth Systems Institute, pers. comm.)
was not fully developed in time to be included in this comparative test. Their method couples a
modified form of the SHALSTAB model with a debris-flow-runout algorithm (Benda and Cundy,
1990) that predicts the potential delivery of landslide materials to the stream-channel network.
This algorithm adds substantially to the management applicability of this method. For example,
in the Washington State reguiatory context, a management "hazard” is defined as the
“likelihood of deliverability and adverse change to public resources” associated with a forest-
practices activity (WFPB, 1995; Chapter 222-22). Assigning a management rating, therefore,
requires that the identified landslide be assessed to determine whether mass-wasting debris
entered stream channels and was delivered to a reach with sensitive public resources (e.g., fish
habitat). Hence, the debris-flow component might assist managers, particularly in addressing
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landslide impacts on downstream resources. The model author aiso has modified the steady- '
state rainfall criterion to calculate critical rainfall intensity as a function of storm duration.
Similar to the SINMAP algorithm for assigning landslide hazard calls, the model defines hazard
on the basis of critical rainfall intensity and soil-parameter values required to “capture” 90% of
the observed landslides in a given basin. Hence, this method also requires the use of landslide

inventory data to calibrate slope-stability predictions and assign management criteria.

3.0 Methods
31 Study areas and landslide data

We chose eight areas in western Washington (Figure 1) for this comparative test. The
test basins range in size from 81 km? to 331 km?(Table 4). Existing Watershed Administrative
Units (WAUs) were used as the test-basin boundaries, wherever possible. WAUS, defined for
the purposes of regulatory watershed anaiysis, typically follow major drainage divides; the
larger-order river systems, however, may be divided into several WAUs to limit the watershed
analyses to a maximum acreage that reasonably could be assessed in the limited time period
permitted by law (WFPB, 1995). Hence, some of our test basins comprise only the upper or
mid- sections of a major river system {e.g., Chehalis Headwaters WAU, Middle Hoh WAU).
Preference was given to those WAUs with recently completed watershed analyses, to utilize
existing databases and to take advantage of the standardized format of data collecting used in
this regulatory process.

One test basin (i.e., Morton) was created from portions of two existing WAUSs (i.e., East
Fork Tilton and Nineteen Creek) to accommodate data restrictions imposed by one of the
models (i.e., Wu and Abdel-Latif, 1995, 1997) that was to be tested. As described previously,
this model was incompletely programmed at the ﬁme of this study. Nonetheless, we continued
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using the Morton basin for tests of other models, since all landslide data had been compiled in'
preparation for testing the Wu and Abdel-Latif model.

We attempted to include at least one test watershed in each of the major geologic
provinces in western Washington (Table 4; Thorsen, 1978). Parent materials range from glacial
tilfoutwash and lightly metamorphosed sediments to volcanics and igneous intrusives. Test
basins also vary in topographic relief (i.e., lowest to highest elevation points) from 818m., in the
Chehalis Headwaters basin, to 1941m. in the Jordan-Boulder bésin. Figure 2A and 2B
demonstrate the relative relief differences between two test basins and show the spatial
distribution of shallow landslides identified in recent watershed analyses. Our intent was to
examine mode! performance in areas with different combinations of relief and parent materials,
as a means for exploring model versatility and the feasibility of using each model as a
management tool in diverse topographic and geologic settings. An apparent gap exists in our
selection of test basins, between the North Fork Stilliguamish and Morton watersheds (Figure
1). The central Cascades Range, roughly from the Snoqualmie River basin south to the Morton
area, however, generally contains similar geologic units (i.e., rhyolitic to dacitic volcanics with
associated clastics, intrusives, and scattered sedimentary basins; Schuster, 1992). Hence, we
chose the Stiliguamish, Hazel, and Jordan-Boulder basins to represent the Cascades geologic
units north of the Snoqualmie basin, and the Morton and East Fork Lewis basins to represent
those to the south.

The eight test basins contain a total of 2524 known landslides (Table 4), including
shallow and deep-seated landslides (i.e., earthflows). We retained data on deep-seated
landslides (e.qg., earthflows) in the test database to evaiuate the ability of each model to predict
shallow landslide features that often are superimposed on more areally extensive earthflows.

Predictions of unstable slopes made by each GI1S model were compared with existing
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landslide inventori_eé and, where possible, hazard-zonation maps. Figures 3 A, B, and C
illustrate three different test basins and show the existing SOILS screen with landslide-inventory
data superimposed, the hazard-zonation maps from watershed analyses, and the model
outputs from SHALSTAB and SMORPH. Note the differences in the geographic extent of the
SOILS cover (Figures 3A versus 3C), and the variations in mapping styles used in hazard-
zonation maps (Figures 3A versus 3B).

Existing digital landslide inventories were acquired from the appropriate landowners in
the test basins where watershed analyses had been performed (Table 5). Where inventories
were not current or were spatially incomplete (i.e., original inventories covered only portions of
the test area), we conducted aerial-photograph and field surveys to fill in data gaps. Aerial- .
photo series extended from the mid-1840's through 1996, in most instances. All inventories
were updated chronologically to include, at a minimum, the most recent storm event known to
have triggered widespread landsliding throughout Washington State (i.e., the high-intensity,
long-duration storm of February, 1996; Gerstel, 1996). In addition, most inventories were
checked in the field to verify database accuracy (e.q., landslide type, location, size). Road-
related failures were retained in the test database, to evaluate the theory (e.g., Montgomery et
al., 1998) that their locations are governed largely by hillsiope gradient and topographic
convergence. Standardized field data-forms were designed similar to the those used in the
mass wasting assessment of the regulatory watershed analysis (WFPB, 1997, Appendix A).
Newly identified landslides were mapped on to 1:24,000 scale topographic maps and then
digitized into the GIS (Arc/Info™, version 8.0, for UNIX on a Solaris platform), coded, and edit-
checked for positional and tabular accuracy.

In some cases, we updated the landslide inventories to include small landslides (i.e.,
less than 100m?) that might have been omitted due to time and mapping-resoiutiron limitations
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that customarily constrain the regulatory watershed-analysis process. We increased the
number of recorded landslides on these inventories by an average 12%, during our field and
aerial-photo verifications of the databases. In the Upper East Fork Lewis River watershed, for
example, our reanalysis of the GIS landslide-inventory cover maintained by the USFS resulted
in a 70% increase in the number of recorded landslides. Hence, the watershed-analysis-
derived landslide inventories really only provide a lower limit on the number of landslides
present during the time period evaluated by the analyst (i.e., typically coinciding with the aerial-
photo record). Consequently, landslide inventories were used here only as a common basis for
comparing model abilities to predict known contemporary landslides, recognizing that other
shallow landslides have been overlooked or perhaps no longer can be discerned in the field and
photo records due to such obscuring factors as vegetation regrowth. Additionally, we assumed
that hazard-zonation maps, if carefully constructed, capture a fair percentage of topographic
features that could have influenced landslide initiation in the more distant past.

All inventory data were projected into Washington State Plane, south zone, North
" American Datum 1927. Having all data in the same projection allowed us to easily incorporate
other existing data (e.g. hydrography, transportation), as well as provide a uniform projection
from whichrto work. |

We encountered a number of problems with existing landslide data while updating and
verifying mass-wasting inventories from the completed, regulatory watershed analyses. These
included incorrect basemaps on which landslides were recorded, as well as incorrectly mapped
landslides. Discrepancies between USDI Geological Survey (USGS) topographic mapé and
basemaps created from GIS for use in watershed analysis typically included differences in
topographic-contour delineations and stream-channe! positions. Keying landslide locations to
these features on USGS topographic maps, for example, apparently cause a positional offset
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when data are transferred to GIS DEM-based topography. A number of mapping errors also ‘
app-eared to be related to inaccurate transfer of field data onto basemaps or incorrect digitizing
from basemaps. In the Sol Duc watershed, for example, we determined from a reassessment
of aerial photographs that several landslides were mapped in tributaries adjacent to the ones in
which they actually exist. Hence, we remapped and redigitized landslides wherever we
encountered such discrepancies during field or aerial-photo verification.

Ancther common mapping problem is related to landslide size. Mapping techniques
used by watershed analysts ranged from representing landslides as a point or symbol (e.g.,
circle) to delineating slides as polygons of finite area. The iatter technique also included a
range of mapping styles, from mapping the failure scarp separately to delineating the entire
portion of slope involved in iandsliding {e.g., some combination of the contributing area,
initiation point, transport zone, debris-flow runout track, and depositional area), generally
accompanied by litile or n6 explanation of mapping style. In addition, landslide mapping is
prone to some amount of inaccuracy, given that data are transferred between a number of
different media (e.g., photos, maps, digital databases) with varying levels of resolution and
precision, and often between different workers (e.g., field technicians, analysts, cartographers).

To address problems of mapped landslide location and size, we created a buffer around
landslides mapped as points or symbols, or polygons smaller than 100m?. The buffer, mapped
as a polygon of radius 15m. (50 ft.) around the presumed center of the landslide feature,
assured
that landslides registered in a 100m? DEM grid cell when inventory data were compared with
GIS model output. In many cases, landslide scarps and bodies were remapped, during aerial-
photo and field verification of the existing databases, to exclude associated features (e.g.,
contributing areas and debris-flow runout tracks). The landslide polygons then were joined with

29




the buffered landslide points to create a single coverage of mapped landslides. The polygon '
and buffer method also served to extend the mapped landslide area by an amount slightly
larger than a DEM 10-m. grid cell, to account in part for imperfectly aligned digital landslide-
inventory data and DEM topography.

- Landslide hazard-zonation maps, created as a product of regulatory watershed
analyses, were employed in this study to evaluate the ability of GIS models to predict areas
considered by field analysts to have a potential for instability. Hazard-zonation maps produced
via the regulatory watershed-analysis process (i.e., Mass-Wasting Map Unit maps; WFPB,
1997, Appendix A) typically delineate areas of presumed low, moderate, and high potential for
tandsliding and delivery of debris to downstream (or downslope) areas with sensitive public
resources. Digital hazard-zonation maps were available in only four of the eight test basins
(Table 5).

The principal dilemma faced with hazard-zonation maps is mapping resolution.
Watershed analysts appear to use two styles of mapping: fine-scale and broad-brush. Fine-
scale mappers delineate map units in detail, attempting to include in a high-hazard polygon only
those slopes a high probability of shallow landsliding and to exclude any stable ground (e.g., the
ridge lines between hollows in steep, dissected terrain; see Figure 3A). Given that such
resolution can be intractable on 1:24,000 scale maps, another mapping option is to include the
entire area in a generic mapping unit and explain in the report text how to differentiate high and
low hazard zones on the ground {e.g., Figure 3B). These broad-brush techniques promote
Type || mapping errors, in which more area is included in a high-hazard unit than likely would
fail. Later in this paper, we discuss how GiS-based models might assist analysts in creating
hazard-zonation maps that better reflect the scale and spatial distribution of topographic
features influencing shallow landsliding.
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3.2 DEMdata

Where available, we used DEMs with 10m. grid resolution for the comparative test
(Table 5). As discussed in paper section 4.5, we also compared mode! output using 10m. and
30m. DEM data, to evaluate the relative percent change in area predicted to fall in each slope-
stability class and to quantify the increase in computational time that accompanies the use of
finer-resolution DEMs.

All GIS-based models described in this study depend heavily on DEMs. DEM problems
commonly reported in the literature, and also evident in this study, include resolution and
mapping artifacts. DEM data usually are distributed as datasets with borders approximating the
boundaries of the original USGS topographic quadrangles, referred to cartographically as tiles.
“Tiling” artifacts can occur along the seams between adjaf:ent sets of DEM data (Figure 4, lower
left), interrupting the actual represented surface with artificial cliffs along the tile edges. Tile
edges often are interpreted by the GIS shallow-landslide models as representing areas of
instability. This type of error only occurs at tile edges and does not propagate into the dataset.
Tiling artifacts were observed most frequently in the 30-m. DEM data used in tr;is study.

“Edge effects” occur when the outermost grid cells of the study area (i.e., the clipped
edges of the DEM) do not have the same general values as adjacent celis (Figure 4, lower
right). This phenomenon only affects the outermost two or three grid cells at the edges of the
DEM, and it does not propagate into the dataset. To eliminate edge effects in the test
databases, all GIS shallow-landslide models were run on a DEM grid larger than the basin area.
The model output then was clipped along with the basin boundary.

In the 10-m. resolution data, the elevation values appear to have a slightly stepped
pattern, resulting in model output with elevation bands (e.g., contours) of similar predicted

value. Typically, banding resuits in slope-parallel arcs of one hazard-potential class, within
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broader polygons of a different hazard-potential class (Figure 4, upper left). The cause of this'
ele\-!ation banding is unknown; however, it may be related to the original elevation-value
collection scheme. Elevation data were created by scanning USGS 7.5-minute topographic
quadrangles, vectorizing the scanned data, coding the vectors, and then assigning X, v, and z
coordinate values on a 10-m. grid using linear interpolation. This process may result in some
elevation banding. DEM data with 10-m. resolution are not subject {o many smoothing filters,
as smoothing tends to degrade original topographic data. This lack of smoothing may also
have some effect on elevation banding.

Resolution of available DEMs aiso can be problematic for precisely locating terrain
features. As discussed in paper section 4.5, the relative resolution of 10-m. versus 30-m.
elevation data creates a better representation of the actual ground surface {e.g., see Figure 5),
especially in resolving small stream channels emanating from zero- and first- order basins,
common initiation sites for shallow landslides (Dietrich et al., 1986). For example, 30-m. DEMs
have a resolution in the x- and y- planes of 30.5 m. (100 ft.) and 45.7 m. (150 ft.). Hence,

V[andslides digitized onto 30-m. DEMs from USGS topographic maps can be positioned more
than one DEM grid cell from their true location, resulting in mismatches between spatiai
distributions of inventoried landslides and DEM grid cells with predicted unstable slopes. In
addition, contour splines fit through 30-m. DEM elevation points can lack curvature more
characteristic of USGS topographic maps, causing an artificial angularity in topographic
features and resulting in relatively poor matches between contour crenulations and stream
courses overlain from GIS hydrology layers. The finer resolution of 10-m. data ('i.e., 12.2 m. (40
ft.) in the x- and y- planes, and 15.2 m. {50 ft.) in the z-plane), which is similar to that reported
for USGS 7.5-minute quadrangles, results in a nearly accurate match between DEM-derived
map contours and those on USGS maps. Consequently, the potential for matching errors
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between DEMs and landslides digitized from topographic maps is considerably less when usin-g

10-m. versus 30-m. DEMs.

3.3 GIS model calibration and database development

The SOILS screen required no adjustments to be employed in this study, and in fact
cannot be adjusted to accommodate any new information, including altered soil classifications
or gradient classes, without significant revamping of the GIS cover. The digitai soils database
for federal lands, maintained by the USDA Forest Service on the Internet, was merged with that
maintained for state and private lands by the WDNR (1988). Nonetheless, six of eight test
basins had incomplete digital soil covers (Table 5), due largely to gaps in soils-layer coverage
on federal property (e.g., Figure 6). For statistical analysis of comparisons between the digital
landslide inventories and soils slope-stability cover in these test basins, an existing landslide
was given a “no data” value where the soils cover was lacking.

The SMORPH model was calibrated in each test basin with its respective landslide-
inventory data to adjust the critical slope classes and their hazard-rating designations in the
gradient-curvature matrix (Table 2). A slope map derived from the DEMs was intersected with
the landslide inventory to determine the maximum gradient found in each landslide polygon. A
curve of maximum gradient versus cumulative frequency percent was created (Figure 7), with
the lowest gradient at which a landslide occurred being used to determine the lower class limit
of the moderate hazard rating. The lower class limit of the high hazard rating was established
at a value for which 15% of the landslides occurred (Table 6), to guarantee a model-prediction
rate of at least 85% of observed landslides.

For consistency with other published tests of the SHALSTAB model (e.g., Montgomery
et al., 1998), we used the following soil-property values: soil depth (z) = 1.0m; soil bulk density
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(ps) = 2000 kg/m?; internal friction angle (¢) = 33°; effective cohesion (C') = 2 kN/m? and
transmissivity (T) = 65 m?/day. These values were selected by Montgomery et al. (1998) based
on extensive field measurements in a small catchment in coastal Oregon (Montgomery et al.,
1997), and the authors felt that they gave reasonable results for their test watersheds in
‘western Washington, including the Chehalis Headwaters WAU that we also use as a test basin.
We then compared predictions of unstable-slope potential for the range of ¢ angles and
effective cohesions set internally in the model to yield a standard range of outputs (i.e., default
parameters; ¢ = 33°and 45°, and ¢’'= 0, 2, 5, 8, 15 kN/m?), to evaluate the effect of modifying
these parameters. In section 4.2 of this paper, we discuss the sensitivity of model output to
variations in input values.

Comparing SHALSTAB with the other GIS models required that we reduce all model
outputs to a common denominator. SMORPH and the SOILS screen yield output in terms of
management hazard ratings (e.g., low, moderate, high), in which the more subjective
determination of what constitutes “hazard” and “risk” previously has been made in the policy
arena. For example, the SMORPH slope matrix is calibrated with landslide-inventory and
hazard-zonation databases created during reguiatory watershed analyses for which definitions
of hazard and risk have been set by T/F/W policy and WFPB regﬁiations {(WFPB, 1995, Chapter
222-22 WAC). Likewise, the SOILS screen hazard designations are derived from' unstable-
slope ratings in the state soil surveys. In the absence of another mechanism for converting all
mode| outputs to the same units of measure, we therefore elected to assign hazard ratings to
the SHALSTAB model output values of predicted critical rainfall, by using rainfall intensity and
duration as the diagnostic criteria.

Given that SHALSTAB model output is expressed as rainfall in mm/day, we created
“precipitation rules” for each test basin by clipping the two-year, 24-hour storm isohyte data
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(WDNR-GIS; Miller et al., 1973) and computing the:minimum, maximum, and mean
prepipitation values for each basin. A high hazard rating was given to each DEM grid cell in
which the predicted critical-rainfall value fell in the model-defined Q, -stability class occupied by
the mean precipitation value calculated for that basin (Table 7). A high rating was also given to
any predicted Q. less than the minimum two-year, 24-hour caiculated precipitation. A moderate
hazard rating was assigned to a DEM cell in which the critical rainfall value occupied the Q. - |
stability class corresponding to the maximum calculated precipitation. A low hazard rating was
assigned to all other Q, stability classes. See Table 7 for the precipitation rules and slope-
stability hazards created for each test basin.

The two-year, 24-hour recurrence interval was chosen as the precipitation regime for
which data were readily available and which yielded the most conservative estimate of failure
potential. The SHALSTAB model is configured such that the less frequent rainfall event yields
a greater percentage of the basin area predicted to fail (Montgomery and Dietrich, 1994).
Theoretically, then, a higher-intensity storm event characteristic of a longer recurrence interval,
and/or a longer-duration rainfall, would result in greater spatial distribution of potential shallow
landslides.

This method of assigning management criteria to SHALSTAB output was chosen in the
absence of established techniques or direction provided by the authors (e.g., see discussion of
management applications in Montgomery et al., 1998). A preferred approach might be to.adjust
the model in each test basin by using measured vaiues of input parameters (e.g., soil
transmissivity, bulk density, cohesion, infernal friction angle), and calibrating predicted
distributions of siope stability with observed landslide inventories and/or associated hazard-
zonation maps in which management critgria have been assigned (i.e., similar to the approach
used by SMORPH). Adjusting input parameters in the current version of the SHALSTAB model
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is problematic, given the relative paucity of soil-property data and the current lack of pUinshed'
algorithms for modelling stochastic elements or calibrating them from landslide inventories.
Obtaining sufficient soil-parameter samples to adequately describe their spatial variability also
could be intractable or prohibitively expensive for creating a landscape or regional GIS cover of
predicted slope stability.

Calibrating mode! output with landslide-potential ratings from hazard-zonation maps is
problematic. We found, for example, that hazard map units with different management
designations (e.g., low and high) might contain DEM grid cells with the same range of Q, - slope
stability class values (e.g., 2 through 7; see Table 3), making it difficult to segregate the eight
model-output classes into discrete management categories of low, moderate, and high.
Calibrating model outputs solely on the basié of landslide inventories also can be misleading
because, as discussed previously, they typically represént only contemporary rates of shallow
landsliding, thus conceivably underestimating the density of potential landslide sites. Landslide
density commonly has been a key factor in assigning management criteria to hazard-potential
map polygons created from inventories (e.g., WFPB, 1997).

The precipitation rules imposed by this study make a number of assumptions, not the
least of which is steady-state throughflow of subsurface water. The SHALSTAB model,
however, is founded on the assumption of steady-state rainfall, constant transmissivity, and
spatially uniform soil saturation (Montgomery and Dietrich, 1994). Hence, the steady-state
precipitation rules are consistent with these assumptions. As described further in report section
4.1, the similarity of watershed-analysis-derived hazard-zonation maps and maps of landslide
hazard potential made with SHALSTAB precipitation rules suggests that this approach yields
reasonable results. Consequently, we have subscribed to this method in the absence of a
proven alternative.
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Figure 8 iliustrates SHALSTAB model predictions of shallow-landslide potential in the '
Jordan-Boulder test basin, using the author-defined Q. criteria (Figure 8A} and predictions in
terms of management criteria as defined by the precipitation rules (Figure 8B). The
comparatively large amount of area classified as high “hazard” by the precipitation-rule
designations likely is the resuit of the way in which subsurface water throughflow, and hence
“soil wetness” necessary to destabilize slopes, is calculated by the model. In the SHALSTAB
* program, water can flow through any one of a number of flow tubes that might diverge around
topographic high points. Hence, the program codes these flow tubes, including the ones over
intervening divergent topography (e.g., narrow ridgelines) as relatively unstable, which, in turn,
are classified as high “hazard” by the precipitation rules. When the magnitude of effective
cohesion is increased, resulting in less area classified as highly unstable, the model incurs
relatively greater error in predicting known, existing landslides. Thus, the model has the
potential for erring one way or the other depending on the assigned values of the input
variables. One approach for resolving this dilernma would be to iterate on the magnitudes of
cohesion until a value is achieved that yields model output most closely resembling the spatial
distribution of existing landslides. As an additional note, the juxtaposition of high and low
“hazard” units in the lower pertion of the ﬁgufe is not an artifact; this terrain contains very steep,

generally unstable slopes that terminate on flat, glaciated valley bottoms {(e.g., see Figure 2A).

4.0  Test Results and Discussion

For the purposes of testing and comparing models, a number of criteria are used to
evaluate the predictive capability and management applicability of each model. Test criteria
have been divided into two categories: scientific and technical. Together with the critical
questions that we posed for each model, these criteria are:
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[A] scientific:

(1) model performance: How do model predictions of shallow landsliding compare with
existing landslide inventories and hazard-zonation maps? How do model
predictions compare with respect to each other?

(2) method limitations: Do data input requirements, particularly those dependent on
fieldwork, limit the utility of the model? Are model assumptions regarding
geomorphic processes or input variables relevant to all western Washington
watersheds? |

(3) geographic applicability: Is the model appropriate for use in all forested watersheds
in western Washington, and can a reliable slope-stability map cover be created
for regional or statewide use?

(4) management applications: Can the model be applied to management decision-
making, and if so, are they accessible to users?

(5) modification requirements: What additional adaptations must be made to facilitate
creating management criteria (e.g., low, moderate, high “hazard”) from model
output? Could and should the model be modified by its author(s) to improve its
predictive capability for all terrain types in western Washington?

[B] technical:

(1) computational time: How long does it take to run the model for an average-sized
basin (e.g., on the order of a WAU)? How long would it take to create a GIS
cover for western Washington?

(2) training requirements: Assuming basic computer skills, how much training is needed
to run the model, interpret model results, and apply results to management
problems?
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(3) data requirements: Can the model be run with defauit values for input variables, if -
field data are nonexistent? Does model accuracy improve with increasing DEM
resolution?

(4) data storage and retrieval: Do model runs or their output require large disk-storage
space? Can the model be run on a personal computer (PC) with GIS software?

(5) modification requirements: is the model computer code adequately documented to
aid users in adjusting input values or programming management criteria? Are
further modifications needed to adapt the model for management use?

In this paper section, we discuss issues [A] (1 through 3) and [B] with respect to the three
tested models. Management applications and mode! modification requirements are discussed

in report section 5.0.

4.1 Model performance
We evaluated the performance of each model by using the GIS to intersect the updated,
digital landslide inventories and hazard-zonation maps with model predictions of slope stability.
For each model, output was expressed in terms of management criteria (i.e., low, moderate,
high “hazard"), as described in the report section 3.0, so that model performances could be
compared directly. We statistically analyzed the following, as a measure of the performance of
each model: (1) intersection of the digital landslide inventory with model predictions of hazard
potential, expressed as the number of incorrectly identified landslides per
total number of landslides in each test basin (i.e., Type | model errors);
(2) intersection of the hazard-zonation maps with model predictions of hazard potential,
given as the percent probability that the model predicts a low landslide potential
where it is likely that landslides have occurred or will occur {i.e., Type | model
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errors); and, -

(35 intersection as in (2) but expressed as the percent probability that the model predicts
the potential for landslides where they are not likely to occur (i.e., Type Il model
errors).

inventories of known existing landslides and maps of hazard potential often are used in
different management contexts. For that reason, we caiculated Type | errors first by
intersecting model outputs with the Iandslid‘e inventories, to evaluate the ability of each model to
predict the spatial distribution of existing landslides. We then computed Type | errors
associated with comparing model outputs and hazard-zonation maps, to assess model abilities
to predict the spatial distribution of existing and potential siope instability. Given that landslide
inventories typically provide only a minimum estimate of contemporary landslide rates, the
hazard-zonation maps theoretically yield a more complete view of the spatial distribution of
past, present, and potential future landslide occurrences.

Table 8 lists, for each model, the number of incorrectly identified landslides per total
number of landslides in each test basin (i.e., Type | errors). We assumed that an existing
landslide was identified incorrectly if all DEM grid cells overlapping the landslide polygon or its
15m. (50 ft.) buffer (e.g., see report section 3.1) wefe coded by the model as having a low
potential (hazard) for shallow landsliding. Conversely, an existing iandslide was assumed to be
identified correctly if any overlapping DEM grid cell was predicted to have a moderate or high
potential (hazard) for landsliding. DEM cells with nho data entry in the SOILS screen (i.e.,
missing soil-survey data) were coded as an incorrect identification, to account statistically for
the incomplete nature of the data coverage. For this test, the SHALSTAB model was run using
default parameters ¢ =33°and C’' =2 kN-J'm2 and assuming that the two-year 24-hour storm
recurrence interval is a reasonable criterion for assigning hazard-potential ratings to the model
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output (i.e., see report section 3_.3).

| A principal assumption of the model comparative tests is that predictions of landslide
probability densities can be compared even though the GIS covers contain known mapping
artifacts (e.g., elevation banding), as described in section 3.2. Given that model predictions of
slope stability are evaluated using the same DEMs and landslide databases, the model outputs
could be evaluated relative to one another. However, computed statistics (e.g., average
number of landslides incorrectiy identified by each model) should be viewed as estimates rather
than absolute values, because the errors in model predictions associated with database noise '
(e.g., DEM elevation banding, field-mapping accuracy and resolution).

Table 8 indicates that the SOILS screen did not identify 32% of the total known
landslides in all eight test basins, whereas the SMORPH and SHALSTAB models misidentifed
3% and 8%, respectively. Figure 9 displays the relative range of model predictions with
SMORPH versus SHALSTAB, shown as histograms of the number of total landslides predicted
in each model-output category. According to the precipitation rules, SHALSTAB classes of Q. =
1, 2, 3, % 4 fall in the management-criteria class 3 (i.e., high “hazard”). Montgomery et al.
(1998) also reported from their test of the SHALSTAB model that it predicted unconditionally
stable slopes in 24% of the area containing known existing landslides, although they discounted
approximately half of these failures as being road-related or undistinguishable on 30-m. DEMs
and, hence, outside the realm of model predictive capability. The use of more accurate DEMs
couid account, in part, for the relatively smaller fraction of landslides undetected by SHALSTAB
in this test. The significantly higher percentage of landslides missed by the SOILS screen can
be attributed to the lack or near lack of soil-survey data for two of the test basins (i.e., the North
Fork Stilliguamish and Upper East Fork Lewis watersheds; see Table 5), given that missing
data were coded as undetected landslides for the purposes of comparing model performances
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(see report section 3.1). Where the SOILS screenwas complete (e.g., Morton and Chehalis '
He'aadwatérs watersheds), however, it misidentified a significantly higher percentage of
landslides than the other two models (e.g., for the Chehalis Headwaters watershed, 32% versus
2% each for the SMORPH and SHALSTAB models).

In the Olympic Peninsula test basins, the SOILS screen misidentified more landslides
than SMORPH but fewer than SHALSTAB (e.g., in the Hoh watershed, 67 versus 53 and 84,
respectively). The fact that these were the only basins for which 30-m. DEMs were used was
ruled out as a likely cause. In other test basins for which modet results were compared using
both 10-m. and 30-m. DEMs, there was no change in the ordering of models based on their
predictive accuracy, although the reiative magnitudes of predicted landslide occurrence (i.e.,
number of correctly identified existing landslides) differed between 10-m. and 30-m. DEM test
results for each model. Hence, the seemingly better performance of the SOILS screen might
be explained by at least two compounding factors. One is that, for the portions of the test
basins in which soils data exist, the SOILS screen classes 68% of the Sol Duc and 84% of the
Hoh basin terrain as potentially unstable or very unstable, so that the majority of the Iéndscape
and its associated landslides fall within the high-hazard-potential category. Although this resuit
lends the appearance that the SOILS screen more closely reflects the spatial distribution of
known landslides than does SHALSTAB, it also tends to over-predict significantly the percent of
watershed area predicted by field-derived, hazard-zonation maps to be potentially unstable (see
further discussion of the SOILS screen in this paper section).

Another compounding factor is that the SOILS screen énd SMORPH model consider
hilislopes as being potentially unstable at gradients somewhat lower than the threshold gradient
defined in the SHALSTAB meodel. In the latter modél, slopes are considered unconditionally
stable when tan8 < tang [1 - (p./e.)] which, for ¢ = 33° and p, = 2000 kg/m?®, means any slopes
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less than 18° (32.5%). Field evidence suggests that‘non-road-related shaliow landslides have'
occurred in this region on slopes closer to 25% (e.g., Shaw and Johnson, 1985; D. Parks,
WDNR, pers. comm.), particularly in gently sloped, groundwater-seepage areas whose
downsiope margins coincide with the top -of steep, inner-gorge slopes, which are quite common
in this terrain. Hence, the SHALSTAB model has the potential for under-predicting the spatial
distribution of unstable ground on hilislopes with gradients less than the threshold value set
internally by the model.

Tﬁe SMORPH model predicted an average of 22 times fewer Type | errors than the
SOILS screen and five times fewer than the SHALSTAB model. The greatest discrepancy in
SMORPH and SHALSTAB model predictions occurred in the Hazel watershed {1% versus 32%
incorrectly identified; Table 8). Given that the Hazel watershed is dominated by deep-seated
landslides in thick glacial deposits (Table 4), we expectéd the predictive capability of both
models to diminish corres;ﬁondingly, with respect to locating earthflow-influenced topography. It
appeared, however, that SMORPH was better able to distinguish the local slope and curvature
of numerous shallow-landslide headscarps superimposed on the larger earthflows. Hence, the
polygons representing deep-seated failures effectively were identified by SMORPH predictions
of high hazard potential on the basis of these smaller secondary features.

This variation in results might be explained by the manner in which the two models
identify “hazard” potential in adjoining DEM grid cells. The SMORPH model analyzes variations
in topographic relief between adjacent cells based on their relative steepness and curvature,
then assigns a value according to the slope matrix (Table 2); hence, the model can discern
topographic changes between a flatter upslope cell and a steeper downslope cell (i.e., a
landslide headwall). On the other hand, the SHALSTAB model can smooth (i.e., not detect)
subtle variations in topographic relief at the DEM-cell scale, by assigning a given flow tube a Q.
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value depending on the flow across its upper boundary (i.e., variable “a” in Equation 2} from
upsiope contributing areas, which, in turn, is governed by the way in which flow is dispersed
from that contributing area to any one of a number of downslope grid cells. Hence, if the
upslope contributing area has a lower gradient and requires a relatively higher water flux to
create "wet” soils, then a relatively steeper cell downslope (e.g., a landslide headwall) might not
be predicted to fail until the same “wetness” is achieved. Hence, the grid cell downslope of the
contributing area is given a lower slope-stability rating, whereas SMORPH assigns a higher
value based solely on topographic factors.

Although Table 8 indicates that SMORPH yielded 43% fewer Type | errors in predicting
known iandslide occurrences than SHALSTAB (Table 8), we wanted t{o evaluate whether these
differences in model performance, based on a comparison in eight watersheds, were significant
statistically. We used a non-parametric test for non-normally distributed, small, independent
samples to evaluate the hypothesis that there is no difference in the average performance of
the SMORPH (SM) and SHALSTAB (SH) models, in terms of their ability to predict the spatial
distribution of known landslides. The null hypothesis is that the means (l) of the population of
Type | errors for each model are equal when only eight independent samples (i.e., test basins)
exist; Hy: Hsu = M- Equality of means was tested with the Wilcoxon rank-sum statistic for two
populations (Walpole, 1974; MathSoft 1998), in which the null hypothesis was true if.

PrWz< w=(a-n(n+1y/2)] > q,
where Pr is the probability distribution, W is the test statistic, a is the smaller of the summed
ranks for each population, n is the number of observations corresponding to a, and « = 0.01,
0.05 is the level of significance. Table 9 indicates that the test statistic is significant at a
confidence level of 95%, permitting rejection of the null hypothesis, which suggests that the
models differ somewhat in their ability to predict known landslide distributions; that is, pgy < Hgy-
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However, the test statistic proved insignificant at the 99% confidence level (Table 9), allowing '
acceptance of the null hypothesis and implying that the difference in model predictive capability
is relatively small. A similar statistical comparison of SHALSTAB and the SOILS screen
indicated that the test statistic was significant at the 99% confidence level, implying that the
screen and model are considerably different in their ability to predict existing landslide
distributions.

Tables 10 and 11, respectively, give the estimated Type | and Type Il model errors for
the SMORPH and SHALSTAB model based on a comparison of model output with hazard-
zonation maps. Error distributions were not computed for the SOILS screen, given that soils-
survey data were complete in only two of the test basins, neither of which had usable hazard-
zonation maps. Type | errors were calculated, for each model in each test basin, by
intersecting the low-hazard DEM cells predicted by .the model with the moderate- and/or high-
hazard map units produced via watershed analysis (i.e., incorporating all map units intersecting
with known landslides in the GIS inventory fayer). This database intersection was expressed
numerically as a percentage of model-predicted, low-hazard areas (in km'z) overlapping field-
mapped hazard areas. Type Il errors similarly were analyzed by intersecting the high-hazard
cells predicted by the model with the low-hazard map units and computing respective areas.
These estimates were made for the four basins in which we had access to complete, digitized,
hazard-zonation maps. To facilitate comparisen (see Table 10 and 11), the percent error for
each model (A/M) in each basin was normalized by the basin area in a given hazard class (A)
divided by the total A for all four basins (T), that is: E = (A/M}{A/T).

Analysis of Type | error estimates with respect to hazard-zonation maps indicates that
the SMORPH and SHALSTAB models similarly under-predict the percent area of hazard map
units determined to be of moderate and/or high failure potential, by an average 6% and 5%,
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respectively. Usin_g'the Wilcoxon rank-sum statistic for two populations, as described '
pre;liousiy, the computed test statistic proved insignificant at the 95% confidence level (Table
9), implying that the models perform similarly in predicting areas of relatively low hazard
potential inside mapped landslide-hazard areas.

Whether the observed discrepancies between model predictions and hazard-zonation
map units represent true “ Type 1 errors” in the statistical sense is debatable, given that three of
the four hazard-zonation maps (i.e., Jordan-Boulder, Haze!, and Sol Duc River) were drawn
using broad map polygons {e.g., Figure 3B, lower left) that incorporated bdth unstable slopes
and intervening stable ground. In the Jordan-Boulder basin, for example, hazard-zonation units
intentionally were drawn to inciude potential landslide sites (e.g., hollows, groundwater seeps,
inner gorges) and intervening divergent topography (e.g., ridge lines) because it was not
possible to delineate them on 1:24,000 scale maps (Coho, 1997). Hence, the GiS-based
models might discriminate, more accurately than the hazard-zonation maps, the topographic
features potentially influencing shallow landslide initiation in finely dissected terrain.

As a test of the influence of mapping resolution on hazard zonation maps, we
intentionally created the hazard-zonation map units in the East Fork Lewis test basin with as
fine a resolution as possible on 1:24,000 scale maps. This allowed us to compare model
predictions with two different scales of hazard-map resolution (e.g., the Jordan-Boulder basin,
Figure 3B, lower left; and East Fork Lewis basin, Figure 3A, lower left). Type | “errors”
generated by SMORPH and SHALSTAB decreased substantially, from 14% and 9% for the
Jordan-Boulder basin, respectively, to 1% and 2% for the East Fork Lewis basin (Table 10;
values normalized as described previously). One implication of this result is that GiS-based
model predictions of slope-stability potential could be used advantageously by analysts in
drawing hazard-zonation maps with higher resolution than demonstrated, for example, in Figure
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3B.

Table 11 shows the distribution of Type |l errors generated by the SMORPH and
SHALSTAB models, based on comparisons with hazard-zonation maps. As in Table 10, error
values are given as normalized relative percent areas. Calculated error estimates for each of
the test basins suggest that SMORPH over-predicts the percent area of hazard-zonation map
units designated as high landslide potential, by an average amount slightly less than predicted

by SHALSTAB (i.e., 3% versus 7%, respectively). In all four test basins, SHALSTAB tended to
| over-predict, by a factor of two greater than SMORPH, the spatial distribution of high-hazard
areas observed on hazard-zonation maps, as depicted in Figure 10. With respect to the East
Fork Lewis basin, which we believe was mapped fairly carefully for the purposes of this study,
some amount of model over-prediction (i.e., 16% for SMORPH and 43% for SHALSTAB) might
be true Type |l errors. That is, the models likely do over-predict observed spatial patterns of
slope-stability potential, as can be discerned from observed spatial patterns of existing and
potential landslides. Particularly in the case of SHALSTAB, however, some portion of this over-
prediction might be an artifact of the manner in which hazard-potential criteria were derived
(i.e., the Q, - slope stability classes assigned by precipitation rules to be included in the higﬁ-
hazard management designation), as discussed previously with regard to Figure 8.I

To evaluate the potential for model use in a management context, we developed a
ranking scheme to quantify model performance and a number of other comparative criteria (see
report section 5.0). We employed a statistical method for ranking moedels in terms of their
ability to correctly and incorrectly identify known, existing shallow landslides. A numeric value

was assigned to each of the possible database-intersect outcomes:
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Type of database intersection ' Assigned- value (p)
Landslide overlaps with DEM cell coded by model as high hazard 0
Landslide overlaps with DEM cell coded by model as moderate hazard o1
Landslide overlaps with DEM cell coded by modei as low hazard 2

For example, an existing landslide was considered to be identified by a particular model if any
superimposed DEM grid cell was coded “high hazard” (p = 0) or “moderate hazard” (p = 1).

The assigned values for all correctly and incorrectly identified landslides in each of the eight test
basins were added to yield a cumulative score for each model, which then was normalized by
the total number of landslides in each basin. Where landslides occurred in areas for which the
soils survey data were missing, the 3OILS screen grid celis were given a score of p = 2. These
normalized scores then were added to a score sheet including results of other tested criteria, as
will be described in report section 5.0.

Table 12 shows the results of this ranked test. SHALSTAB gained approximately twice
as many points as SMORPH, reflected in the normalized cumulative scores (i.e., 1.9 versus
0.8, respectively). The SOILS screen received a significantly higher score (i.e., 6.7) than the
other two models, due in part to the partial or total absence of soils-survey data in most test
basins. SHALSTAB received a greater cumulative score than SMORPH, largely due to .more
frequent intersections of identified landslide polygons with model-predicted low and moderate
hazards (Figure 11). Some of the discrepancy theoretically could be attributed to our
assignment of management criteria via the precipitation rules, as described with respect to
Figure 8.

At the outset of this study, we posed the following questions with regard to model

performance: (1) How do model predictions of shallow landsliding compare with existing
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landslide inventories and hazan:;-zonation maps?; and, (2) How do mode! predictions Compare:
wit?; respéct to each other? In summary, test statistics imply that the SMORPH and
SHALSTAB models predict fairly well the spatial distribution of known existing landslides in the
eight test basins (i.e., error frequency of 3% and 8%, respectively). These models, in general,
also compare favorably with maps of shallow-landslide potential produced via watershed
analyses (i.e., 6% and 5% Type | errors, respectively; and 3% and 7% Type |l errors,
respectively). The SOILS screen performed least well, missing 32% of the known existing
landslides (i.e., Type | errors) and providing an incomplete cover of a substantial percentage of
western Washington terrain (e.g., full data coverage existed in only two of the eight test basins).
Test statistics also indicated that the mean differences in predictive model capability between
the SOILS screen and either model were statistically significant, whereas the mean differences
between SMORPH and SHALSTAB were marginally significant statistically. Hence, we
conclude that the SOILS screen is comparatively less accurate and certainly less complete than
the two tested models. While the average differences in predictive capability of SMORPH and
SHALSTAB were not great, the former model tended to produce siightly fewer Type | and li
errors. Contingent on the appropriateness of the precipitation-rule algorithm used {o calibrate
the SHALSTAB model, we conclude that SMORPH is slightly more accurate than SHALSTAB in
predicting existing and potential landslides as represented in our updated landslide-inventory

and hazard-zonation-map databases.

4.2  Method limitations

The purpose of this study component was to evaluate the potential constraints placed
on management use of each tested model, by: (1) the nature of the key assumptions used to
create the model; (2) the type and amount of data required as model input; and, (3) model
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sensitivity to changes in input parameters or variables. Limitations on model applications
resulting from changes in terrain characteristics {i.e., geographic limitations) are discussed in
paper section 4.3. |

As discussed previously, the principal assumption made by all three models is that
topographic controls dominate the spatial distribution of shailow landsliding. The relatively
small errors incurred by SHALSTAB and SMORPH in predicting known shallow-landslide
occurrences (i.e., 8% and 3%, respectively; Table 8) and potential unstable slopes (i.e., <10%
and <6%, respectively; Tables 10 and 11) suggest that this assumption is quite reasonable,
because both models on average reproduce fairly faithfully the spatial distribution of unstable
slopes as specified in field-derived inventories and hazard-potential maps. Furthermore, the
slightly stronger performance of the SMORPH model, in terms of predictive capability, implies
that topographic controls are a dominant factor in prombting shallow failures and that inclusion
in the model algorithms of 6ther key influencing factors (e.g., soil properties, hydrology,
vegetation) might not improve model performénce, at least with regard to .predicting the spatial

_distribution of shallow landslides in western Washington and similar terrains with maritime
climates.

The relatively simplistic SMORPH model offers some advantages in a management
context because it yields results that are comparable to the more sophisticated SHALSTAB
model, without having to calibrate input variables (e.g., soil and hydrology properties) with off-
site data or needing to collect additional data to run the model. in addition, a simplistic model
with fewer data-input requirements contains less potential for Type | and |l modei errors
associated with inaccurate characterizations of the spatial and tempora! distributions of input
variables. The SMORPH model, on the other hand, might iose substantial predictive capability
in terrain where the topographic factors of hillslope gradient and curvature serve less well as
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proxies for the other key influencing parameters. Models like SHALSTAB, which can be
expanded and refined to include algorithms addressing spatial and/or temporal variabilities of
soil and hydrologic factors, might be more appropriate in situations where landslide processes
are not governed primarily by topographic forcing of soil- and water- mass fluxes. In its present
form, however, the SHALSTAB model uses constant values for soil and hydrologic variables as
placeholders for as-yet-undeveloped algorithms that would address problems of spatial and
temporal variability. Hence, we conclude that the SHALSTAB model needs to be developed
further before testing the hypothesis that factors other than topography might shape the spatial
distribufion of landslides.

For the test basins in which the soils-data coverage was complete (i.e., Sol Duc, Morton,
and Chehalis Headwaters), the SOILS screen incurred the largest error in predicting known
landslides (30%; see Table 8). This result suggests that basing shallow-landslide prediction on
hillslope gradient and soil stability ratings generated by state soil surveys is less accurate and
effective. Moreover, we suspect that the use in the SOILS algorithm of gradient, rather than
gradient and curvature, contributes primarily to the greater inaccuracy of this method. The
assumption of gradient and curvature as the primary landslide-forcing factors in western
Washington is supported by the demonstrably better predictive capabilities of SMORPH and
SHALSTAB. Hence, we believe that the SOILS method would be improved substantially by
incorporating topographic curvature in the computational algorithm.

Using SMORPH or SHALSTAB in 2 management context also is affected by the
accessibility of data required as input to run the models. The SOILS screen cannot be adjusted
to calibrate output with new or more accurate data, without recreating the GIS iayer. Table 13
lists: (1) the required input variables; (2) their default values as set internally in the models; (3}
the typical sources of data available to the user in modifying default values without additional
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fieldwork or analysis; and, (4) the relative ease in collecting data when vaiues in the literature '
are inappropriate for the watershed of interest or watershed-specific data are ndnexistent. For
the purposes of comparison, each model 'was assigned a score reflecting the number of
variables and the relative ease in collecting data from a given watershed to adjust the default
values assigned to each variable. These scores are used in report section 5.0 to assess, in
part, the management applicability of each model. Although the SOILS screen received zero
points in this scheme, the score was adjusted later to reflect the relative drawback in using a
method that cannot be adjusted to accommodate more accurate information on site or
watershed physical variables.

As described in report section 2.2, the SMORPH model requires that slope-stability
classes be set on the basis of mapped landslide densities (e.g., a high hazard rating
corresponds to slope units in which the greatest landslide number have been measured per unit
basin area), which can be ascertained from landslide inventories. Hence, where landslide
inventories and/or hazard-zonation maps exist, the model can be calibrated without additional
analysis or field work. In addition, management criteria (i.e., low, moderate, and high hazard-
potential ratings) are known a priori because they are specified in, or can be derived, from
watershed-analysis products. The greatest utility of this model lies in exirapolating from
watersheds in which inventories have been compiled to areas with similar physical
characteristics and no existing landslide databases. The limitations of this method are that it
depends on the quality of the landslide database and the appropriateness of data extrapolation
to basins where little physical data exist for verifying model predictions of potential landslide
densities. Also, as mentioned previously, the simplicity of the model can be a detriment where
topographic controls are sub- or co-dominant to other hillslope processes.

As can be seen in Table 13, the SHALSTAB model would require the greatest amount of
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literature and/or field analysis should the user decide to use values for input variables other
than the defaults set internally in the model. Employing values from the literature can be
problematic, given that little data exist on key soil input variables in western Washington
watersheds. Montgomery et al. (1998), for example, use measured values obtained from a
small catchment in coastal Oregon, in which the local geology and precipitation regime are not
representative of all of western Washington. This model is limited, as in SMORPH, by the
appropriateness of data extrapolation (e.g., from coastal Oregon to western Washington) and
the quality of landslide inventories if model calibrations are performed using inventory data.
Montgomery and Dietrich (1994) currently do not provide algorithms for addressing spatial and
temporal variability in input parameters, nor are there standard methods for designing field
sampling strategies and determining a representative value for an input variable if field
measurements yield a wide range of values. It is possible computationally to run the model for
discrete portions of a watershed which contain relatively homogeneous parent materials. Such
an approach, however, might be prohibitively expensive or labor-intensive for landscape or
regional management applications. Consequently, published uses of SHALSTAB to date (e.g.,
Montgomery et al., 1998) have employed the default values specified in Table 13.°

An additional Iimitatién of the SHALSTAB model in the management arena, as alluded
o by the model authors (Montgomery and Dietrich, 1994), is the current lack of a formula for
converting model output (i.e., critical rainfall (mm/day) necessary to initiate shaliow landsliding)
to management criteria (i.e., low, moderate, and high "hazard” potential). As described in
report section 3.3, we chose an approach that utilized existing data and similar units of
measure. This method also circumvented needs for additional fieldwork or manipulations of
landslide inventories to back-caiculate appropriate values for input variables, the latter of which
appears to require some field effort as well. Our approach, however, might need to be replaced
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or refined as others begin to work on the problem and find more robust solutions.

As‘ a measure of model sensitivity to input-parameter variability, we ran the SMORPH
and SHALSTAB programs for a range of input values. This test did not include the SOILS
screen because of its non-adjustability. Table 14 shows the results of modifying the threshold
gradient classes in the SMORPH model (Table 14/—'\), and using the range of default values for
effective cohesion and phi angles given in the SHALSTAB model (Table 14B). These tables
were ‘compiled using the methods employed in Table 12, in which database intersections (i.e.,
landslide polygons from the inventory database and model predictions of slope stability for each
DEM grid cell) were assigned a value depending on their agreement {p = O for a high-hazard
DEM cell overlying a landslide polygon and p = 1 for a moderate-hazard cell overlying a
landslide polygon) or disagreement (p = 2 for no match). As described for Table 12, the
cumulative score for each test basin was normalized by the number of existing landslides, and
the normalized scores for all eight basins were added to yield a total score for each model. The
higher the score for each incremental increase in the magnitude of an input variable, the greater
the number of known existing landslides incorrectly identified by the model (i.e., Type | errors).
This technique provided a quantitative means for evaluating model predictions of slope-stability
potential with changing values of the input variables.

For each model, the values of the input variables were adjusted between those
calibrated to yield model predictions most closely resembiling the landslide inventory and
minimum values at which the hillslopes were predicted to be entirely stable (i.e., no potential
landslides). For the SMORPH model, this invoived increasing the threshold gradients in each
of the low, moderate, and high landslide-hazard potential categories until the model predicted
that all watershed slopes would be fully stable. This was accomplished by shifting the slope

hazard-potential classes calibrated from the landslide inventory along the horizontal plane of
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the slope matrix (Table 15). For the SHALSTAB model, the effective cohesion was in(:reased'
fror;w c'= 0 kN/m? to ¢’ = 8 kN/m?, at which point all watershed slopes were predicted to be
entirely stable.

Tables 14A demonstrates for the SMORPH model that, as the gradient thresholds
increase for each of the hazard-potential categories (i.e., low, moderate, high), the frequency of
Type | model errors increases correspondingly (i.e., database intersections assigned two points
in the ranking scheme). The percent change (a%) in assigned points between applying the
calibrated slope matrix (i.e., Step 0) and adjusting the matrix so that all slopes are predicted to
be stable (i.e., Step =) is % = 0.04, when averaged over all eight basins. Likewise, Type |
errors produced by the SHALSTAB model occur more frequently with increasing magnitudes of
effective cohesion (Table 14B). For the SHALSTAB model, the percent change averaged over
eight test basins is 4% = 0.09, when comparing model default options ¢’ =2 kN/m? and ¢’ = 8
kN/m?, where ¢ = 33° is held constant. The resuits for the default option of ¢’ = 15 kN/m? and ¢
= 33° are not shown, given that all watershed slopes were predicted to be fully stable at
effective cohesions of ¢’ > 5 kKN/m?.

The percent chaﬁge with increasing values of the input variables for each model was
compared graphically by scaling the y-axis of a SMORPH plot of gradient-threshold class
boundaries {i.e., Steps 24, 47, 70, and 93) versus cumulative percent change, by the y-axis of a
SHALSTAB plot of effective cohesions (i.e., ¢’ = 2, 5, 8 kN/m?) versus cumulative percent
change (Figure 12), given regular increments of increasing gradient and cohesion aiong the
respective x-axes. This permitted a visual comparison of the relative sensitivity of each model
to changes in the magnitudes of input variables, as reflected in the incremental increases in the
number of points assigned to correct (p = 0,1) and incorrect (p = 2) grid-cell intersections.
Figure 12 shows that the SHALSTAB model is somewhat more sensitive to increases in the
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value of effective cohesion than is SMORPH to increases in the gradient threshold at which grid
cells are predicted to have a low hazard potential (i.e., Type | model errors). That is, for an
incremental increase of ¢’ = 3 kN/m?in the SHALSTAB model and gradient S = 23% in the
SMORPH model, the former predicts a relatively greater percent change in the number of Type
| errors than does the latter. Hence, we conclude that SHALSTARB is relatively more sensitive to
changes in input variables than is SMORPH, although both models can produce erroneous
resuits with inappropriately chosen vallues of the input variabies.

Figure 13 shows, for the Morton test basiﬁ, the Q. classes versus the cumulative
percent area predicted by SHALSTAB to be unstable, for the a range of default effective-
cohesion values (i.e., ¢’ = 2, 5, 8 kN/m?). The curve represented by star symbols corresponds
to the default input values of ¢’ = 0 kN/m? and ¢ = 45°. This figure also depicts the significant
variation in the number of predicted landslides with increasing effective cohesion. As
summarized by Montgomery et al. (1998), existing literature regarding the influence of root
strength on soil mobility suggests that ¢’ = 2 kN/m? is appropriate for clearcut slopes with
decaying tree stumps and ¢’ = 8 kN/m? is more representative of mature, hardwood-dominated
forests or younger conifer stands. We found from model tests in the Morton watershed, for
example, that effective cohesions of ¢’ > 8 kKN/m? led to model! predictions of fully stable slopes
for any critical rainfail of Q. < 400 mm/day (16 in/day), which is twice the rhagnitude of a 100-
year, 24-hour storm event.

This rainfall amount is greater than the probable maximum precipitation computed for the
Morton area (N. Wolff, WDNR, pers. comm.), which suggests that cohesions of ¢’ > 8 kN/m?,
presumably characteristic of forested conditions, yield unrealistic model results when used as
input values.

Hence, the value of ¢’ for which the SHALSTAB model predicts roughly the same spatial
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distribution of existing landslides is that corresponding to a clearcut watershed. None of the
eight tested watersheds is entirely clearcut. Using a value of ¢’ more representative of partially
or fully forested conditions, however, would have resulted in a significantly higher percentage of
Type | model errors, including émission from model predictions of tandslides known to have
occurred in mature, previously unharvested stands (i.e., in portions of the Middle Hoh test
basin). This problem might be resolved by running the model for discrete forest-age-class units
with ¢’ chosen separately for each unit. We did not explore this possibility due to study time
constraints.

The SHALSTAB model also appears to be quite sensitive to variation in the input value
of the internal friction angle. We ran the model for the cases ¢’ =2 kN/m?, ¢ = 33° and ¢’ =
2kN/m?, ¢ = 45°. Increasing the phi angle by 12 degrees resulted in a decrease of 89% in the
area predicted by the model to be highly unstable (e.g., ‘Qc classes 1 through 3 for the Upper
East Fork Lewis basin). |

Hence, we conclude that both SHALSTAB and SMORPH are reiatively sensitive to the
magnitudes of their respective input variables, and that SHALSTAB is measurably more
sensitive than SMORPH. We suggest that SHALSTAB model users employ conservative
estimates of ¢ and ¢’, in the absence of reliable field measurements or proven methods for
estimating appropriate values. Similar to Montgomery et al. (1998), we found that the
combination of ¢’ = 2 kN/m? and ¢ = 33° yielded predicted tandslide spatial distributions most
closely resembling measured landslide distributions in all watersheds tested by this study. [n
addition, SMORPH modelers should calibrate the slope matrix designations of landslide hazard
for each gradient class using accurate landslide inventories, wherever possible, to reduce the

potential for Type | model errors.
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4.3 Geographic applicability

To investigate the ability of each model to correctly predict landslides in different
western Washington terrains, we separated the eight test basins into six categories pertaining
to major geomorphic provinces: continental glaciated terrain (Hazel), Cascades volcanic
complex (Morton, UpperrEast Fork Lewis River), Northwestern Cascades system (Jordan-
Boulder, North Fork Stilliguamish River), Olympic core rocks (Sol Duc River), Western Olympic
Assemblage (Middle Hoh River), and Eocene volcaniclastics (Chehalis Headwaters) (see
Figure 1). We rated each model in by the number of Type | errors it produced in each
geomorphic province (Table 8, right-hand column).

As described in sections 4.1 and 4.2, the Soils screen performed |least well overall
because of the lack of soils-survey data in six of the eight test basins and the inability of the
method to discriminate slope curvaturé (i.e., 32% Type | errors). Of the test basins with
complete or nearly complete data, the screen yielded the greatest percent of Type | errors in
the Eocene-volcaniclastics (32% of the test baéins) and Cascades-volcanics provinces (48% of
the test basins}, both regions of which incorporate most of southwestern Washington. Likely
reasons are that the method could not detect relatively steeper, convergent features (e.g., inner -
gorges) inside broader, gentle slope areas, particularly in areas of lower topographic relief iike
the Chehalis Headwaters basin in which a substantial fraction of the existing failures were
found. As described in report section 4.1, the broad _inclusion of slopes in soil hazard-potential
polygons resulted in fewer Type | errors in some test basins with the SOILS screen than with
SHALSTAB, although the results still indicated substantial predictive errors in certain terrains
(i.e., the Hazel test basin).

The SHALSTAB model performed least well in the continental-glaciated terrain (e.q.,
32% Type | errors in the Hazel test basin); Montgomery et al. (1998) also concluded in their test
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that the model predicted landslides least well in thick glacial deposits. The percent of Type | ‘
mo'del errors increased by an average 69% over those computed for the other five provinces.
The model also produced approximately 80% more Type | errors than the SMORPH model in
the Olympic terrains, as discussed in report section 4.1.

The SMORPH model performed least well in the western Olympic test basin (7%} and,
surprisingly, misidentified only 1% of the existing landslides in the continental-glaciated terrain.
As discussed in report section 4.1, it appears that the Arc/info'™ GRID tool is capable of
discerning variations in gradient and siope curvature on the order of one DEM grid cell, allowing
the model to detect 100m? or larger shallow landslides superimposed on deep-seated failures.
Thus, it appears that SMORPH might be more capable of identifying landslide features in
glaciated terrain, although a larger sample of test basins would be required to properly evaluate
this theory.

We conclude from this test that SHALSTAB and SMORPH could reasonably be
employed in most western Washington terrains to predict shallow landslides. The SHALSTAB
model appears to work least well in continental-glaciated terrain, while preliminary results
suggest that SMORPH might perform substantially better than SHALSTAB in glaciated
topography dominated by deep-seated failures. The SOILS screen runs a distant third in most
terrains because of the incomplete nature of the GIS coverage and the relatively greater

percent of Type | model errors.

4.4 Technical criteria

We asked five general questions with respect to technical aspects of each method: (1)
How long does it take to run the model program?; (2) How much training is required?; (3) How
much computer space is required by the model programs?; and, (4) How easy would it be for
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the user to modify the model? These questions would be important from a practical pe‘rspecti\}e
anc; could influence how each model would be used in a management context.

Prior to running any GIS-model program, it is critical that someone familiar with
computing systems and Arc/info™ programming language verifies that the program is running
correctly. The optimum method for double-checking program execution is to compare standard
(i.e. default) model output with output obtained for the same geographic area from the model
authors or from exisiing databases produced‘by the model on the WDNR-GIS system. None of
the tested models has been refined sufficiently to document, internally or otherwise, all the
known technicai complexities of loading and running a program on a particular operating
system, so it is important to test program execution.

The purpose of evaluating computer processing time was to provide users with an
estimate of the average time necessary to create slope stability screens, particularly when
working at a landscape or regional scale. The SMORPH model program runs about five times
faster than that for SHALSTAB. On average, for 30-m. DEMs, the SMORPH program takes
three minutes to run for a WAU (i.e., an area typically less than 200 km?), while it takes 18
minutes to run the SHALSTAB program. Run time increases approximately three-fold when
model programs are executed using 10-m. DEMs. If the user were to employ 10-m. DEMs in
creating a slope stability screen of all western Washington WAUs, for example, the SMORPH
program would require roughly 90 hours of computer time, while it would take well over 400
hours of computer time to process the SHALSTAB program. The SOILS screen exists already;,
therefore, computer use is limited to the time it takes to create a map.

A certain level of training is required to fully understand and use the model output,
regardless of which model is being employed as a slope stability screen. Only very basic
computer skills are necessary, however, to run model programs and create maps of the
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predicted slope-stability distributions, assuming that DEMs exist for the area of interest. The '
user should know how to obtain access (i.e., “log in"}, navigate, execute basic file commands,
and run the model program on the computer system. However, a basic geotechnical
understanding of landslide processes is necessary to calibrate the SHALSTAB and SMORPH
models, and the SHALSTAB model additionally requires an ability to interpret and apply soil-
property and hydrologic (e.g., precipitation) data.

Furthermore, the SOILS screen and SMORPH model give results of siope-stability
analyses expilicitly in terms of management criteria currently used in Washington (i.e., low,
moderate, and high landslide potential), so that interpretation of output is straight-forward if the
user is familiar with their definitions. The default criteria used in SMORPH (Table 6) might need
to be calibrated with landslide inventories from the basin of interest, or from an analogous
watershed, and some training might be necessary in using the calibration algorithm. The
current version of SHALSTAB provides no guidance for translating output to management
criteria or for calibrating input variables to local area conditions. Consequently, more training
and background knowledge are necessary for running the SHALSTAB program and interpreting
model resduilts.

Given that DEM data are the only absclute requirement for ail three models, data input
requirements can be relatively straightforward. SHALSTAB and SMORPH provide default
values for soil and slope properties, respectively, allowing the user to run the computer
programs without first having to calibrate the models. We strongly recommend, however, that
input values be calibrated to achieve greater predictive accuracy.

High DEM resolution is key to producing reasonable resuits with SHALSTAB and
SMORPH. The SQILS screen, in contrast, is unaffected by DEM resolution because it was

derived from static data (i.e., fixed values for hillslope gradients and soil properties). DEMs with
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10-m. resolution generate more accurate results than 30-m. data because they better 'represeﬁt
the true topographic surface. Figure 14 compares the frequency of predicted landslides in the
Jordan-Boulder, North Fork Stilliguamish, and Hazel test basins, using 10-m. versus 30-m.
DEMs. Results of tests using the SMORPH and SHALSTARB programs indicate that, when 10-
m. DEMs are used, both models predict relatively more failures in the unstable-slope classes
(i.e., SMORPH slope-stability rating class 3 and SHALSTAB critical-rainfall classes 1, 2, and 3;
see Figure 14). It should be noted, however, that this relatively greater number of landslides
predicted using 10-m. DEMs is actually more representative of measured spatial landslide
distributions in these basins. That is, employing 30-m. DEMSs results in a higher percent of
Type Il model errors. On average, use of DEMs with 10-m. rather than 30-m. resolution leads
to a 94% improvement in the predictive accuracy of the SMORPH model and 60% improvement
in SHALSTAB results. Hence, itis recohmended that 10-m. resolution data be used whenever
possible.

The SMORPH model requires the least amount of storage space on a computer system.
It produces grid data, which use less storage space than GIS coverages like the SOILS screen.
The SHALSTAB model also generates grid data; however, it produces one grid for each of the
default output options (i.e., one grid for each of the preset combinations of ¢’ and ¢).
Additionally, SHALSTAB creates several other grids that typically are not used in a
management context, although an experienced programmer can modify the code to circumvent
creating -these data layers. For geographic areas smaller than a typical WAU, data storage
requirements do not pose problems for a computer with Arc/Info™ software, as a single grid or
small set of grids does not take up much disk space. Data-storage prbblems are substantially
greater for some systems (e.g., personal computers) when areas larger than the size of a
typical WAU are used.
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All tested models can be run on a personal computer with Arc/Info'™ software. The
SHALSTAB model requires that the computer also have Fortran and C program executability
for running subroutines that: (1) remove artificial topographic convergences occasionally
created by the DEMSs; and, (2) calculate upslope contributing areas to each grid cell for the
hydrologic component of the model. Only the SOILS screen can be accessed on a personal '
computer with non-Arc/info'™ software and no additional programming. Both SHALSTAB and ‘
SMORPH would require additional programming to make them compatible with non-Arc/tnfo™
software.

User access to each of the three models would be improved by additional program or
method documentation. SMORPH and SHALSTAB programs would benefit from more internal
documentation, to assist future generations of programmers in adjusting the input variables.
Some program documentation was develop;ed, as part of this study, for both the SHALSTAB
and SMORPH models. This on-line help consists of ‘read.me’ files (i.e., text files that assist
with program executions) and internal documentation (i.e., comment lines within the program to
assist the Arc/Info™ programmer in adjusting or calibrating the model). We also developed
programs for viewing the model output and creating simple maps from the model data, and we
created a menu-driven system for adjusting SMORPH slope criteria. A similar tool would
enhance substantially the usability of the SHALSTAB program. A menu-driven system
eliminates the need for a programmer to adjust the program input variables, and it serves to
remind the user that input variables generally need to be calibrated for the area of interest.

The SOILS screen, on the other hand, does not need internal documentation because it
exists as a compiled cover, rather than an executable program. Metadata (i.e., data about the
data) exist for the SOILS screen, but little documentation exists regarding the applicability of the

WDNR-GIS SOILS layer to different management scenarios. The SOILS screen also lacks any
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accompanying written discussion of the rationale for assigning management criteria to certain
combinations of soil types and hillslope gradients. This information could assist the user in
interpreting the accuracy of the slope-stability prediciions, especiaily when the area of interest

falts outside the specified soil-gradient class.

5.0 Discussion and Conclusions Regarding Model Applications

The primary purpose of this study was to evaluate in a management context the use of
three currently available methods for predicting shallow landslides. in particular, our goal was
to compare the current GIS slope-stability cover, used in Washington regulatory and
management practices, with other, potentially more reliable, GiS-based models. Toward that
end, we developed a rating scheme to measure the overall performance and applicability of the
three tested methods with respect to the scientific and technical criteria discussed in this paper.

The rating scheme was formulated so that each model would be scored for each
identified criterion based on either of the following: (1) statistical values summarized elsewhere
in this paper; or, (2) assigned points representing qualitative answers to questions for which no
quantitative measures could be found. The latter were expressed as “yes” (usually assigned
zero points; p = Q) or “no” (p = 1) questions. The lowest cumulative score reflects the model
that generates unstable-slope predictions most comparable with existing landslide databases
(i.e., fewer Type | model errors) and would be the most readily applicable in a management
context.

Table 16 shows the results of this rating exercise, and Table 17 lists, for each criterion,
the rationale for the point assignment. The purpose of the numerical ranking is to describe
relative performance; the magnitudes of the total scores, therefore, have no real significance for

measuring how much better one model performs than the other. These results suggest that the
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SMORPH model might offer more advantages in a management or regulatory context than the:
SOiLS screen and the current version of SHALSTARB (i.e., with the values of soil-property and
hydrologic input parameters held constant).

In general, the reasons for the relatively higher rating (Table 16) of the SMORPH model
are:

(1) SMORPH generated spatial predictions of shallow landslides that most closely resembled
the measured densities of known existing landslides (i.e., landslide inventory databases)
and the field-derived maps of landslide hazard potential (Tables 8, 10, and 11).
Specifically, the SMORPH model, on average, yielded fewer Type | and Il model errors,
even in continental-glaciated terrain;

(2) SMORPH contains fewer input variables than SHALSTAB; consequently, there is less
potential for Type I and |l model errors associated with using input vaiues that are
unrepresentative of the study area. In addition, the input variables in SMORPH (i.e.,
gradient and slope curvature) appeared in general to be less sensitive to variation than
SHALSTAB input variables (i.e., effective cohesion and internal friction angles; see
Figure 12). The predictive capability of the SOILS screen likely is limited by the absence
of a slope-curvature parameter in the computational algorithm, and the GIS cover
cannot be adjusted to reflect hillslope gradients and soil properties outside the specified
general categories.

(3) The GIS cover generated with SMORPH uses management criteria (i.e., low, moderate, and
high landslide-potential ratings) to signify classes of slope instability, whereas the
SHALSTAB model outputs values, in terms of critical rainfall required to initiate
landsliding, that require geomorphic interpretation to be applied in @ management
capacity. The SHALSTAB model currently does not provide a méchanism for converting
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from critical rainfall unifs_ to management criteria. Hence, the SMORPH model is moré

readily applicable in the current management decision-making framework in

Wéshington.

(4) SMORPH runs approximately 80% faster than SHALSTAB on a computer workstation,
which might be important to managers with limited computer resources and large data
requirements (i.e., for creating regional screens of slope stability). SMORPH also
requires about five times less data-storage volume than SHALSTAB and several times
less storage volume than the SOILS screen. And,

(5) Relatively less training is necessary to instruct users on executing SMORPH programs and
interpreting model results. The SMORPH model also requires comparatively less
assistanr;‘.e from technical specialists in calibrating input variables (i.e., adjusting the
slope matrix with landslide-inventory data) and interpreting model results. The
SHALSTAB model requires more data collection (e.g., to properly characterize soil
properties and calibrate the mode! for the precipitation regime in the area of interest)
and interpretation of model predictions, which are accomplished more easily by users
with some background in geomorphology, gecengineering, soil sciencef and/or
hydrology.

Hence, the SMORPH model might fill the near-term needs of resource managers and

regulators for a ready-to-use model that can create a landscape or regional shallow-landslide

screen.

The SMORPH model potentially offers some disadvantages as well. Together with the
SOILS screen and the current version of SHALSTAB, this model could lose some predictive
capability in terrain where topographic controls on shallow landslide initiation are secondary to
other destabilizing factors (e.g., snow avalanching, slumping along earthflow margins, ground
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subsidence, erosion of glacial deposits). The model would have to be modified substantially to'
include algorithms for explicitly treating variables other than slope gradient and form.

Alternatively, the SHALSTAB model, using the precipitation-rule method for converting
model output to management criteria, yields results that are fairly comparable with those of the
SMORPH model and existing Eaﬁdslide inventories. This model potentially could be more
versatile than SMORPH or the SOILS screen, because it contains placehoiders for algorithms
that would address explicitly the spatial and/or temporal variability of soil and hydrologic factors.
In addition, future comparisons of the SMORPH model and a more sophisticated SHALSTAB
model might resolve whether explicit treatments of soil and hydrologic properties (e.g.,
SHALSTAB) yield substantially better predictions of slope-stability potential than do more
simple models in which topographic parameters serve as proxies for these key variables (e.g.,
SMORPH). Test statistics from this study suggest that the current version of the SHALSTAB
model performs no better than SMORPH, even though it includes several key variables (i.e.,
soil transmissivity, depth, cohesion, bulk density, and internal friction angle), albeit expressed
as constants. This result could be attributed to a number of factors, includiné the possibility that
soil properties are of secondary importance compared with fopographic factors, and that
including them expilicitly in predictive models is less critical than accurately simulating fine-scale
variations in slope topography.

The SOILS screen is relatively more “user-friendiy” than the other two models because it
is delivered to the user as a pre-compiled GIS cover that requires no calibration and gives
results in termrs of management criteria that can be incorporated readily in the existing
regulatory and forest-management decision-making processes. Nonetheless, it received a
comparatively less favorable score than SMORPH and SHALSTAB because it yielded
significantly more Type | errors (i.e., incorrectly identified landslides). In addition, the SOILS
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screen contains large gaps in geographic coverage because digital soils-survey data are
lacking on some portions of Washington, especially on federal {ands. Furthermore, the digital
soils layer maintained by the federal government (e.g., USDA Forest Service) can be
incomplete, as was encountered in this study.

incompleteness aside, the relative inaccuracy of the SOILS screen puts it at a
disadvantage when compared with the more accurate SMORPH and SHALSTAB models.
Study results imply that the SOILS GIS cover, maintained by the state for management and
regulatory applications, should be replaced by one created with either predictive model. Given
that the SHALSTAB and SMORPH models have been developed and tested in maritime
climates of the Pacific Northwest, they should be similarly analyzed for precipitation regimes
and terrains more typical of the continental interior, prior to their use east of the Cascades
Range or elsewhere.

A number of interesting questions have arisen during this study regarding the technical
merits of each GIS-based model, as well as the quality and applicability of landslide inventories
and other databases used to calibrate the models. These include such issues as the relative
need for including spatial variability of soil properties as elements of GIS-based models
designed to be used in terrain where topographic controls dominate the spatial distribution of
shallow tandslides. Given that the SHALSTAB and SMORPH models, as currently configured,
do not explicitly treat the stochastic nature of key variables, yet they predict relatively well the
known distribution of landslide potential, attests to the real possibility that it might not be
necessary to include spatial and temporal variability in the model frameworks. Furthermore, the
relative agreement between SMORPH mode! predictions and observed landslides suggests that
including soil properties in the model equation might not even be necessary for producing a
reliable, preliminary landslide-screening tool designed for management applications. The same
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argument could be made for SH_ALSTAB, since soilvariables are held constant and the model'
in essence functions like SMORPH in discriminating landslide potential on the basis of
topographic factors.

Our study also motivates the need for continued discussion of appropriate ways to
parameterize model predictions of landslide potential in terms of management decision-making
criteria. We have identified a number of alternatives for converting model predictions of
landslide potential to decision criteria. All of them, however, rely on the current manégement
formulation of what constitutes “hazard” and “risk”, whereby hilislope processes are treated
deterministically (e.g., the analysis of "hazard” does not necessarily take into account the
history of landslide processes predating recent management activities). It may be that GIS-
based topographic models more accurately reflect the full spatial and temporal distribution of
potential unstable stopes than do landslide databases generated during watershed analyses,
because the former are measuring landslide potential based on landform characteristics that
largely existed prior to 20th. century land management, while the latter are based heavily on
aerial-photo interpretation and, hence, provide only a contemporary measure of iandslide rates.
GIS-based models, therefore, could be useful in héiping to redefine the way in which hazard-

zonation maps typically are generated.
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Table 1.

Criteria for determining slope stability from the SOILS data.

: . Mass Wasting *
Sails criteria for slope stability ratings Potential
Very Unstable map units with slopes greater than 30% very high
map units with slopes up to 30% high
Unstable map units with slopes greater than 65% very high
map units with slopes up to 30% medium
map units with slopes from 30-65% high
Stable map units with slopes up 1o 30%, where the soil phase is rated as unstable medium
map units with slopes up fo 30% medium
map units with slopés up 1o 30%, where the soil phase at 30-65% is also rated stable low
Table 2. Matrix relating slope curvature and gradient to shallow landslide potential, as used in the

SMORPH mode!. The number and distribution of slope gradient classes (i.e., A - E) are set for a
specific geomorphic unit with the aid of landslide inventories or slope stability analyses.

Slope Slope gradient {percent)
curvature
A B C D E
Convex low low low low moderate
Planar low low low moderate high
Concave low moderate high high high
Table 3. Critical rainfall classes (Q.) designated by the SHALSTAB model.
Q, class Rainfall amount needed

Rainfall amount neederl Q, class

to induce failure to induce failure

1 Unconditicnally unstable at this 5 200-400 millimeters per day
cohesion -
6 greater than 400 milimeters per day
2 0-50 millimeters per day 7 Unconditionally stable
3 50-100 millimeters per day 8 Stable at this cohesion
4 100-200 millimeters per day
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Table 4. Physical and geologic characteristics of test basins.
Test Basin Physiographic Geologic Province Area Topographic | Number of
Area Relief Known -
(km? and acres) {m) Landslides
Jordan-Boulder | North Cascades Northwest Cascades Metamorphic 2
I L 133 km
Range Suite; includes meta-quartz diorite,
low-grade schists and phyllites, and 1941 155
. ! 32,987 ac.
plutonics
North Fork North Cascades Low-grade metamorphosed 130 km?
Stillaguamish Range sediments, including phyllite and 1504 215
River . greenschist 32,144 ac.
Hazel western flank of Continental glacial deposits 98 km?
Cascades Range - overlying low-grade 1528 117
Puget Lowlands metamorphosed sediments 24,209 ac.
Sol Duc River northern Olympic Crescent Basalt and Olympic Lithic 185 km?
Peninsula Assemblage (metamorphosed 915 101
marine sediments) 45,674 ac.
Middle Hoh western Olympic Western Olympic Assemblage; 331 km?
River Peninsula extensively sheared and . 1575 733
metamorphosed marine sediments 81,879 ac.
Morton Central Cascades Eocene to Recent andesitic 88 km?
Range volcanics 1127 980
21,686 ac.
Chehalis Coast Range Eocene to Miocene mafic volcanic 182 km?
Headwaters {Willapa Hills) assemblage 818 134
_ 45,000 ac.
Upper East Fork | Central Cascades Eocene to Recent andesitic 81 km?
Lewis River Range valcanics with igneous intrusions : 1022 89
20,016 ac.

" Includes identified shallow and deep-seated landslides.
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Table 5.

DEM resolution and sources of data for the eight test basins.

Test Basin Source of Hazard- DEM Percent Basin
~ Landslide Zonation Map Resolution with Soils
Inventory Data Available Layer
Jordan-Boulder | WDNR, 1997 Yes 10m 63%
North Fork Perkins and
Stillaguamish Collins (1997),
River inventories No 10m 22%
created for this
study
Hazel WDNR, 1988 Yes 10m 65%
Sol Duc River WDNR and
USDA Forest Yes 30m 95%
(4 WAUSs) Service (1996)
Middle Hoh WDNR (in No
River preparation) 30m 64%
(not yet
digitized)
Morton Murray Pacific No
Timber Corp.
(Portions of 2 (1998) 10m 100%
WAUSs) (not available in
digital format)
Chehalis Weyerhaeuser No
Headwaters Co. (1994); o
updated for this | (errors in digital 10m 100%
study database)
Upper East Fork | USDA Forest
Lewis River Service (1997)
and inventories Yes 10m 2%

created for this
study
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Table 6. Gradient threshold values {in percent) calculated from landslide databases for input to the

SMORPH slope matrix (Table 2) for each test basin. See text for discussion.

Gradient threshold corresponding to “hazard” 'designations for each curvature class

River

Low for Low for Low for Moderate for High for all
. convex and convex and convex, convex, high slope forms
Test Basins planar, planar, high for | moderate for for planar,
moderate for concave planar, high for concave
concave concave
Jordan-Boulder 15 45 50 70 ®
N.F. 15 40 47 70 e
Stillaguamish
River
Hazel 15 24 47 70 0
Sol Duc River 15 24 47 70 oo
Middle Hoh 15 24 47 70 oo
River
Morton 25 95 65 70 o
Chehalis 15 65 70 80 %
Headwaters
Upper E.F. Lewis 40 50 60 70 %
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Table 7. Precipitation “rules” used to create management criteria for the SHALSTAB model. See text for

discussion.
B ) Management Criteria I[Area-Weighted Areq-Weighted
Test Basin Low Moderate High I\P’Ilf::::;pitation gii)::lir;iLtl:tIion
“Hazard"” “Hazard” “Hazard” |

Jordan-Boulder 6,7,8 5 1,234 108 127
Upper North Fork 5,6,77,8 4 1,2,3 83 102
Stillaguamish

Hazel 56,78 4 1,23 80 102
Sol Duc 6,7.8 5 1,234 129 152
Middle Hoh 6,7,8 5 12,34 185 229
Morton 5,6.7.8 4 123 || 100 114
Chehalis Headwaters 6,7,8 5 1234 116 140
EF. Lewis 6,7,8 5 1,2,3,4 I’ 123 140
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Table 8.

Predictions of known, existing shallow landslides using the three models (SOILé
screen, SMORPH, and SHALSTAB), given as the number of incorrectly identified

landslides (no. missed) per total number of landslides in each basin (see text).

Test Basin Number SOILS SMORPH SHALSTAB
of {$ = 33°, C’ = 2kN/m?)
Identified
Land- no. N/T no. NIT no. (N/T)
slides (T) | misse misse missed
d d (N)
(N) (N)
‘éorda”' 185 40 0.26 0 0.00 5 0.03
oulder

North Fork
Stillaguamish 215 202 0.94 1 0.00 20 0.09
River
Hazel 117 34 0.29 1 0.01 37 0.32
Sol Duc River 101 6 0.06 1 0.01 12 0.12
Middle Hoh
River 733 67 0.09 53 0.07 84 0.11
Morton 134 64 0.48 5 0.04 14 0.10
Chehalis 980 309 0.32 20 0.02 18 0.02
Headwaters
Upper East
Fork Lewis 89 89 1.00 2 0.02 1 0.01
River
Mean 0.43 0.02 0.10
(Std. Dev.): 3155 | 1014 | oasy | 194 | oo | 2 | zoi0)
Total: 2524 811 0.32 83 0.03 191 0.08

89



Table 9.

Wilcoxon rank-sum test for two populations, comparing means (u) of error
distributions generated by the SMORPH and SHALSTAB models (see Type |

error estimates in Table 8 and 10).

Comparison of

Comparison of

Test Criterion V;‘i’:;le SMORPH (1) and | SOILS (1) and
SHALSTAB (2) SHALSTAB (2)
Type | errors: -
Existing landslides L 88 88
a; a, 15.5, 48.5 53.0, 11.0
W test 0.04 0.01
statistic
significant at Yes; Yes;
a =0.057 My < My Hy = My
significant at No; Yes;
a=0.01? 1= Mz 1> Hp
Type | errors: N/A
Hazard-zonation n, N, 4,4
. ' (see text)
map units
a, a, 7.0,9.0
W test
statistic 0.44
significant at No;
o =0.057 K, = M
significant at No;
a=0.01? Hi = Mz
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Type | model errors, in which each model predicts that shallow landslides likely do not occur; whereas field-derived

Table 10.
maps of hazard zonation indicate that there is a moderate to high likelihood of landsliding.
Mass-Wasting Map
Unit Data SMORPH Model SHALSTAB Model
Test Basi Basin Area Total Bl,arilgig;? Basin Area
est Basin . . .
W|th_ Moderate Basin Ma_p with Low AmM) | E= Map Predicted with (AIM) -
to High Hazard Unit _ Unit Low Hazard _
: ) Acres 1 Hazard = P(AIT) M . 2 = P(A/T)
Rating (km?) No. . 2 No. Rating (km?)
(%) Rating (km?)
(A) (M)
(M)
Jordan-Boulder 73.9 055 f| 1 22.8 0.31 014 || 6,7,8 14.3 0.19 0.09
Hazel 78.9 081 || 1 12.3 016 | 008 | %% 12.5 0.16 | 0.8
Sol Duc River 2.7 0.01 1 1.0 0.39 001 [ 6,7,8 1.1 0.43 0.01
Upper Bast Fork 9.0 011 | 1 17 019 | 001 | 67,8 23 026 | 0.02
ewis River

Total: 164.5 (T) 37.8 30.2
Mean: 41.1 0.37 9.5 0.26 0.06 7.6 0.26 0.05

! Map unit corresponds to “high” hazard potential as defined by gradient-curvature class (see Table 2).
2 Map unit corresponds to “high” hazard potential as defined by precipitation rules (see Table 7).
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Table 11. Type Il model errors, in which each model predicts that shallow landslides likely have a high probability of occurring,
whereas field-derived maps of hazard zonation indicate that there is a low likelihood of landsliding.
Wass-Wasiing Map Unit SMORPH Model SHALSTAB Model
Basin Area Basin Area
Test Basin Basin Area with Total Ma Predicted Ma Predicted
Low Hazard Basin UniF: with High (A/M) = Unir: with High {A/M) =
Rating {(km?) Acres No.’ Hazard = P(AIT) No.? Hazard = P(AIT)
(A) (%) ) Rating (km?) * | Rating (km?)
(M) (M)
Jordan-Boulder 59.6 045 || 3 9.1 015 | 003 | 3% 17.8 030 | 005
Hazel 18.4 019 | 3 6.3 034 | ooz | "2 14.3 0.78 | 0.04
Sot Duc River 182.1 009 || 3 19.0 0.0 | 005 | b2 26.3 0.14 | 008
Upper East Fork 72.0 089 | 3 117 016 | 003 | V2 30.8 0.43 | 0.09
Lewis River 3,4
Total: 3321 (T) 46.1 89.2
Mean: 83.0 0.63 11.5 0.19 0.03 22.3 0.41 0.07

' Map unit corresponds to “low" hazard potential as defined by gradient-curvature class (see Table 2).
2 Map unit corresponds to “low” hazard potential as defined by precipitation rules (see Table 7).
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Table 12. Comparison of model performance in correctly and incorrectly predicting
landslide potential. For each model, slope-stability ratings of each DEM grid cell
were compared with the landslide-inventory database. A numerical value was
assigned to each of three possible database-intersection outcomes, as described

in the text.
SMORPH Model SHALSTAB Model SOILS Screen
Number |Calibrated [Normalized ¢’=2 kN/m? |Normalized| Modeled |Normalized
Test Basins |of slides| model | calibrated| ¢ =33° value value Value
value value
Jordan-
Boulder 155 5 0.03 11 0.07 80 0.52
UpperN. F.
Stillaguamish | 215 15 0.07 50 0.23 404 1.88
Hazel 117 3 0.03 34 0.72 68 0.58
Sol Duc 101 11 0.1 26 0.26 12 0.12
Middle Hoh 733 155 0.21 177 0.24 134 0.18
Morton 134 28 0.21 44 0.33 128 0.96
Chehalis
Headwaters 980 49 0.05 40 0.04 618 0.63
Lewis 89 9 0.10 2 0.02 178 2.00
Total: 2524 275 0.81 434 1.91 1622 6.87
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Table 13. List of required input variables for each model, their default values as specified in the model, and the data sources
available to calibrate model output for the watershed of interest. The variable is assigned a rating of 1 if the required
data for a specific watershed are relatively easy to obtain without substantial field work, and 2 for the converse.

Relative Ease of Collecting
Units of Default Values Watershed-SpeCIIfic Data
Method Input Variable Description Measure S?J' il:’ tllua Data Source Rating Points Percent
ode Assigned Total
Points
: no changes can be made without recreating the GIS
SOILS screen none algorithm and cover layer N/A 0 0
threshold gradient_class class-boundary values and. 1
radients for boundaries set threshold values can be adjusted (via landslide
SMORPH model | hillslope gradient 9 percent at 15%, 24%, based on landslide inventories and . . 0.1
different hazard- N o - inventories and
rating classes 47%, 70% extrapolated to adjacent DEMs)
9 {Table 2) watersheds
1
. . forest-soils and experimental
soil COf,leSIorI tree rqot kN/m? 0,2,5 8,15 studies (see Montgomery et al., {can be estimated
(c) cohesion -
1998, for references) via forest-age-
class maps)
depth-integrated, 2
soil but soil depth soil surveys and isolated site-
transmissivity {(and, hence, m¥day 65 specific studies (spatially and
(T} wetness) held P temporally
constant variable)
SHALSTAB 2
model soil depth given as m 1 soil surveys and isclated site- (spatially and 0.9
(h) constant specific studies temporally
variable)
. . ifc'=0,thend = 2
phi mtfern.al _ang[e of degrees 45% else ¢ = rock-mechanics literature {varies spatially by
{d) soil friction o
33 rock type)
2
soil bulk density | given as ka/m 2000 soil surveys and isolated site- (spatially and
(Ps) constant g specific studies temporally
variable}
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Table 14. Results of a sensitivity test for the SMORPH and SHALSTAB models. For each model, the values of the input variables
were changed and the predicted shallow-landslide distributions were compared with the existing landslide inventories
according to the point scheme described in the text. A. Total scores for each test basin, shown as cumulative and
normalized by the respective number of landslides, for the SMORPH mode! when the threshold gradients for low,
moderate, and high landslide-hazard potential are increased (i.e., shifted laterally along the horizontal slope-matrix plane
as in Table 15). B. Total scores, shown as cumulative and normalized, for the SHALSTAB model when the effective

cohesion (¢’) and friction angle (¢) are changed.

A. SMORPH model:

Change in Gradient Thresholds for Low, Moderate, and High Landslide-Potential Designations (see Figure__ )
Number of Assigned Points (Cumulative and Percent Total)
;est_ No. Step0 | Norm. | Step Norm. | Step Norm. | Step Norm. | Step= | Norm. | Percent
asin of - Step0 | 24 Step 24 { 47 Step 70 Step Step= | Change

Slid 47 70

s
Jordan- | 455 5 0.03 6 004 | 47 | 030 | 124 | 080 | 465 | 300 | oot
Boulder
NF Stilla- | 215 | 15 007 | 27 | 043 | 147 | oes | 307 | 143 | es5 | 300 | 0.02
guamish .
Hazel 17 3 0.03 40 0.34 109 0.93 170 1.45 - 351 3.00 0.01
Sol Duc 101 11 0.1 41 0.41 111 1.10 179 1.77 303 3.00 0.04
Mid. Hoh 733 155 0.21 308 0.42 686 0.94 1174 1.60 1466 2.00 0.11
Morton 134 28 0.21 25 0.19 72 0.54 146 1.09 268 2.00 0.11
Chehalis 980 49 0.05 79 0.08 260 0.27 771 0.79 2940 3.00 0.02
EF Lewis 89 9 0.10 8 0.07 32 0.36 88 0.99 178 2.00 0.05
TOTAL: 2524 275 0.81 533 1.67 1464 512 2959 9.92 6616 21.00 0.04

! Percent change from preferred values (i.e., those resulting in predictions most similar to the spatial distribution of existing landslides; Step 0) and

maximum values at which the hilisiopes are predicted to be fully stable (i.e., Step «).
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Table 14 cont'd. Results of a sensitivity test for the SMORPH and SHALSTAB models. For each model, the values of the input
variables were changed and the predicted shallow-landslide distributions were compared with the existing iandslide
inventories according to the point scheme described in the text. B. Total scores, shown as cumulative and
normalized, for the SHALSTAB model when the effective cohesion (¢'} and friction angle (¢) are changed as per
the default values given by the model.

B. SHAI__STAB model:

Change in Values of Effective Cohesion (¢’ = kN/m?) and Friction Angle (¢ = degrees)
Number of Assigned Points (Cumulative and Percent Total)

gest_ No. c'=2 Norm. ¢'=0 Norm. c¢'=5 Norm. c’'=8 Norm. Percent
asin of ¢ =33 | value ¢ =45 | value $=33 | value ¢ =33 | value Change

Slide .
]

Jordan-

Boulder 155 11 0.07 15 0.10 a0 0.58 455 3.00 0.02

NF Stilla-

guamish 215 50 0.23 95 0.44 278 1.29 645 3.00 0.08

Hazel 117 84 0.72 116 0.99 182 1.56 351 3.00 0.24

Sol Duc 101 26 0.26 56 0.55 154 1.52 303 3.00 0.09

Mid. Hoh || 733 177 0.24 281 0.38 851 1.16 1466 2.00 0.12

Morton 134 44 0.33 74 0.55 167 1.25 268 2.00 0.17
Chehalis 980 40 0.04 72 0.07 2940 3.00 2940 3.00 0.01
EF Lewis 89 2 0.02 9 0.10 60 0.67 178 2.00 0.01

TOTAL: 2524 434 1.1 718 3.19 4722 11.04 6616 21.00 0.09

! Percent change from preferred values (i.e., those resulting in predictions most similar to the spatial distribution of existing tandslides; ¢’ = 2kN/m?
and ¢ = 33°) and maximum values at which the hillslopes are predicted to be fully stable (i.e., ¢’ = 8kN/m? and ¢ = 33°).
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Table 15.

Adjustment of the SMORPH slope matrix to test the sensitivity of increasing threshold gradients on model predictions of
shallow-landslide potential. Step categories refer to step-wise shifts of the hazard-zonation criteria (i.e:, low, moderate, ~
high) with respect to the designated gradient-threshold classes, for the Olympic Peninsula test basins. L = predicted low
shallow-landslide potential; M = moderate potential; H = high potential.

Step 0;  (Calibrated using landslide inventories) Siope Gradient (%)
Stope Gradient (%) Curvature o |1s 25 47 70 90 to «
Curvature 15 | 25 I 47 70 to oo convex L L L L L M
convex L L L hY | planar L L L L M H
planar L L M H concave L L M H H H
concave M H H Step 70:
Step 47- Slope Gradient (%)
Stops Gradient (%) Curvature 0 15 25 47 70 90 100 | 110t0
Curvature 15 25 1 90 100 to = convex L L L M
convex L L L M planar L L M H
planar L L L M H concave L M H H
concave L L M H H H
Step «:
Slope Gradient (%)
Curvature 15 25 47 70 10
convex L L L L
planar L L 7 L L
concave L L L L
Step 24:
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Rating scheme used to compare the management applicability of models using scientific and
technical criteria discussed in the text.

»

Table 16.
|

MODEL TESTED
SMORPH SHALSTAB | WDNR
RATING ¢’ =2 kN/m?, | SOILS
TEST CRITERIA SCHEME b =33 SCREEN
SCIENTIFIC | Model Comparison with landslide :
CRITERIA performance | inventory - Type | model 0.03 0.08 0.32
errors
Comparison with Hazard- See text
Potential Maps - Type | and 0.06 0.05 1
errors Tables 8,
10, 11,12
Comparison with Hazard-
Potential Maps - Type |l - 0.03 0.07 1
errors
Comparison of overall
predictive capability 08 1.9 .0
Method For greatest predictive
limitations accuracy, does the model Yes =0 o 0 1
need to be calibrated with No=1
field data?
Input-variable data See Table 0.1 0.9 1
accessibility and adequacy 13 ’ '
Model accounts implicitly or
explicitly for spatial See11.;,ab'e 0.0 0.7 0.2
variability of input variables
Model sensitivity to changes | See text, )
in input variables Table 14 0.04 0.0 1
Geographic Ability of model to correctly
applicability identify slides in each of the
following terrain types:
I[Cont!nental- glaciated 0.01 0.32 0.29
errain
Cascade volcanics 0.03 0.06 0.74
See text
NW Cascades system and Table 0.0 0.06 0.60
8
Olympic core rocks 0.01 0.12 0.06
Western Olympic 0.07 0.11 0.09
Assemblage
Eccene volcaniclastics 0.02 0.02 0.32
Management | Are management criteria Yes =0
applications {L,M,H hazard} built in to _ 0 1 0
No=1
the mode!?
Are models available to the Yes=0 0 0 0
general public? No =1
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Can the following persons
run model (assuming
access to system that can
fun programs):

SCIENTIFIC Mgmt. Appl. 1 1 0
CRITERIA
GIS experience 0 o 0
Are model resulis
interpretable by the
following persons?:
No mass-wasting mapping 1
experience ) _ {existing
Yes =0 1 model with 0
No = 1 no mgmt.
criteria)
Mass-wasting mapping 0
experience
true for
0 geomor- 0
pheologists
and forest
hydrologists
Madification Can model be adjusted to Yes = 0
requirements | work in all western WA. No = 1 0 0 1
terrains? -
ls it essential that models
include management criteria
to be interpretable in the
current following arenas?:
regulatory application 1 1 1
management application 1 1 i
(e.g., harvest and road Yes =1
planning) No=0 in most instances
academic (e.g., for research :
and analysis) 0 0 0
Can model be adjusted to
include other key variables Yes =0
if topographic controls are _ 1 0 1
; . No =1
not dominant in the
watershed?
TECHNICAL |} Computerrun | 10 m DEM average 0.20 0.92 N/A
CRITERIA time time per
30 m DEM basin 0.05 0.30 N/A
10 m DEM expected
time to 0.13 0.62 N/A
create w.
30m DEM WA, 0.03 0.20 N/A
coverage
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Training How much training is None = 0
requirements | needed to run model Some = 1 1 1 0
{assuming basic computer (<5'hrs) . :
skills)? )
How much training (i.e., 0 = some
office and field) is neededto | (1 day) 0 4 0
interpret model cutput? 1=more
(> 2 days)
TECHNICAL Training What Ioglstlcal Adequate 0 0
CRITERIA requirements | documentation exists? =0 4
Developed during this
None =1 study
Data Can model be run with Yes =0
requirements | DEMs and/or default values No = 1 0 0 1
as the only required input?
Does model accuracy 0 0
improve with increasing Yes =0
DEM resolution? No = 1 (avg. 94% (avg. 60% 1
improve- improvement)
ment)
Data storage | Which model uses the 1
& retrieval biggest storage space? Bigger =
1 0 (Needs ~ 5 X 1
storage
Smaller = space of
0 -SMORPH)
Can model be run on a PC Yes =0 0 0 0
with ARC/INFO software? No=1
Can model be run on a PC Yes, with
with non-ARC/INFO GIS? additional
program-
ming = 1
1 1 0
Yes, w/o
additional
program-
ming =0
Are there potential problems
for PC users re: data Yes = 1
storage requirements for No =0 0 o] 0
areas larger than one .
WAU?
Are there potential problems
for PC users re; data Yes = 1
storage requirements for No = 0 0 1 1
areas larger than several
WAUs?
Modification Is model adequately
requirements | documented internally (e.g.,
comment lines) for ease in Yes=0 1 1 N/A
adjusting input variables, or No=1
externally for interpreting
results?




Does model need more

- Yes=1
work and/or programming to No = 0 0 1 0
adapt it for management . . :
use? -
TOTAL SCORE: 9.6 18.5 236
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Table 17. Criteria used for rating scheme (Table 16.)
TEST CRITERIA Rationale Used for Point Assignment
w . . .
o Model pompanson with landslide See Table §
m | performance inventory - Type | model errors
z R
% Comparison with Hazard- See Table 10
o Potential Maps - Type | errors
e
2 Comparison with Hazard- See Table 11
% Potential Maps - Type |l errors
> Comparison of overall predictive See Table 12
capability
nnrrelittg?igns gggg;ﬁ?iﬂgg:gﬁ?ﬁg uracy, Both of the models shoulc! be calibrated. The
calibrated with field data? SOILS data cannot be calibrated.
Input-variable data accessibility See Table 13. The SOILS data cannot be
and adequacy updated.
Model accounts implicitly or Topographic variables explicit for SHALSTAB and
explicitly for spatial variability of SMORPH (0 pts.)}, not for SOILS {1pt.). SHALSTAB
input variables cohesion explicit (O pt.), transmissivity, depth, phi,
and bulk density set as constants (4 pts.); if not
held constant, assign O pts. Soil properties implicit
in SMORPH and SOILS (0 pts.). Sum fotal and
divide by total number of points possible.
Model sensitivity to changes in See Table 14. The SQILS data cannot be updated,
input variables and thus is insensitive.
Geographic Ability of model to correctly
applicability identify slides in each of the
following terrain types:
Continental- glaciated terrain
Cascade volcanics
NW Cascades system
See Table 8.
Olympic core rocks ‘
Western Olympic Assemblage
Eocene volcaniclastics
Management | Are management criteria (L.M,H SHALSTAB does not have management criteria
applications | hazard) built in to the model? set.
Are models gvailable to the All tested models are available to the public.
general public?
Can the following persons run
model (assuming access to
system that can run programs):




YIH3ALIHD DI4ILNIIDS

Mgmt. Appl. No GIS experience
GIS experience The SOILS data is easy to access with no GIS
P : : experience. Both models require some GIS
Are model resulis interpretable by | SXPerence to access and run.
the following persons?:
No mass-wasting mapping Experience with mass-wasting concepts is a
experience necessary ingredient in understanding both models
outputs. The SOILS data does not require this
Mass-wasting mapping experience. ’
experience
Modification Can model be adjustedto work in

requirements

all western WA. terrains?

The SOILS data cannot be adjusted.

Is it essential that models include
management criteria to be
interpretahble in the current
following arenas?:

regulatory application

To be useful as a regulatory tool, any model must
have management criteria.

management application (e.g.,
harvest and road planning)

Most management applications would benefit from
having criteria set.

academic {e.g., for research and
analysis})

it is not necessary for criteria to be set for strictly
academic uses of any model.

Can model be adjusted to include
other key variables if topographic
controls are not dominant in the
watershed?

The SMORPH model assumes topography controls
landslide behavior. if this is not the case, model
output suffers. The SOILS data cannot be
calibrated.

r‘,{ Computer run | 10 m DEM-time per basin Divide average number of minutes to complete a
2 time model run by 60. The SOILS data is a static layer
= 30 m DEM-time per basin and as such, it requires no time to run.
O
,)2 10 m DEM-time for western WA Divide average number of hours by 672 (number of
9] hours in 2a month). The SOILS data is a static layer
g 30 m DEM-time for western WA and as such, it requires no time to run.
m
& | Training How much training is needed to Training would consist of how to access the
> requirements | run model (assuming basic models, determine whether the model is
computer skills)? appropriate for the intended use, how to calibrate
the models, and how to interpret the model results
How much training (i.e., office Because SHALSTARB does not have management
and field) is needed to interpret criteria, it is important to include extra training to
model cutput? understand how to use that models output in the
area of interest. Some knowledge of hydrology is
useful.
,-",., Training What logistical documentation No documentation exists for the SOILS layer
2 requirements § exists? regarding its use as a slope stability screen.
=
O | Data Can model be run with DEMs Both models can be run using a DEM and the
,’—’ requirements | and/or default values as the only default values. The SOILS layer is a static
0 required input? coverage and therefore does not require a DEM.
A
m Does model accuracy improve See Figure 14. The SOILS layer is a static
§ with increasing DEM resolution? coverage and therefore does not require a DEM.
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Data storage

Which model uses the biggest

Both models produce grid type data, that requires

& retrieval storage space? less storage space than coverage type data, like
SOILS. However, SHALSTAB produces volumes of
extraneous data.

Can model be run on a PC with In addition to ARC/INFO, the PC user must also

ARCG/INFO software? have Fortran and C to run SHALSTAB.

Can mode! be run on a PC with The SOILS layer is an existing coverage and does

non-ARC/INFO GIS? not necessarily need ARC/INFO software to create
a map.

Are there potential problems for

PC users re: data storage For a small area {a WAU or two), there should be

requirements for areas larger no data storage problems.

than one WAU?

2:.? :;eri fgtzgi:gor?:ims for Because both SOILS and SHALSTAB require more

requirement's for areas ?arger disk space, over large areas (e.g., WRIAs), there

than several WAUs? may be data storage problems.

Modification Is mode! adequately documented

requirements

internally (e.g., comment lines) for
ease in adjusting input variables,
or externally for interpreting
results?

None of the models tested were more than
skeletally documented internally. The SOILS data
has no need for internal documentation, as it is not
a program.

Does model need more work
and/or programming to adapt it
for management use?

The SHALSTAB model dees not currently have
management criteria.

104




Figure 2. Shaded relief maps of the basins with the most and least amount of topographic relief. Red
lines indicate basin boundaries, white circles are landslide locations. Figure 2a is the Jordan-Boulder
basin, with a view to the east, up the Cascade River. The valleys that contain the Jordan, Boulder, and
Irene creeks are on the right, Monogram Peak is on the left. Figure 2b is the Chehalis Headwaters basin,
which has the least amount of topographic relief. The view is to the north, towards the town of Pe Ell.




Figure 1. Index Map of western Washington.

The inset map shows the coterminous

United States with Washington state shaded.

In the main map, the test basins used in No

this study are highlighted. County boundaries M " ’Thg,.

and some of the major cities of western R ellingham n Cas
C‘ades

Washington are shown for orientation. L
Heavy lines describe the approximate \
boundaries of the major geomorphic terranes. |
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Figure 3. Comparison maps of the SHALSTAB, MWMU, SMORPH, and SOILS data for a portion of the
Jordan-Boulder and Lewis basins. The hydrography is drawn in blue, the landslide locations are depicted
as black polygons and circles. The lack of SOILS data in the Jordan-Boulder basin (3b, upper right) led
fo large numbers of slides having an inventoried 'no data’ value. The broad-brush approach to MWMU
mapping in the Jordan-Boulder basin led to large inclusions of the landbase into a high hazard category
compared with the modeled output. In the Lewis basin (32), no soils information on stability exists. The
fine-scale approach to MWMU mapping in the Lewis basin more closely approximates the modeled
output. in the Chehalis Headwaters basin (3c), the SOILS data is drawn with the hydrography,
topography, and landslide inventory on the left. Much of the basin is in the unstable or very unstable
SOILS categories irrespective of whether the ground is at the ridgetop, on a sideslope, or in the valley.
The SHALSTAB and SMORPH datasets (on the right) both show significantly less of the landbase in an
unstable category, and the areas that are in an unstable category are all topographically based.
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Figure 4. Digital Elevation Model (DEM) artifacts. Tiling artifacts (4a, lower left) can arise when DEM data
from different quadrangles are appended together. They express themselves as false cliffs oriented north-
south and east-west along quadrangle boundaries. Tiling artifacts are commen in the 30m resolution data,
but rare in the 10m resolution data, as great care was used to remove tile artifacts in the finer-scale data
Edge effects (4b, lower right) occur along the outermost rind of pixels of a DEM, where the model is not
able to correctly identify the slope characteristics of the edge pixels relative to its eight nearest neighbors
Elevation banding (4c, upper left) occurs only in the 10m resolution data, and is most noticeable in basins

with high relief




Figure 5. Comparison maps of 10m vs 301
resolution DEM data for a portion of the
Jordan-Boulder basin, with streams in
blue and landslide locations in black.

The resolution of the DEM greatly
influences the ability of the model to
predict landslide prone terrain. The

upper map is derived from the 10m DEM.
Note the greater ability of the 10m data

to resolve small bedrock hollows and
stream channels, where shallow landslide:
commonly occur.
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showing the SOILS compared to
the MWMU information. The
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Figure 11. Hisluarams of the categorized

SMORPH and SHALSTAB landsiide values, Using the
manaﬁemani criterla oulined in Table 7, the

modelled values were categarized info three bins:

0 }landslida oceurring in a high hazard area),

1 {(landslide occuring in a moderale hazard area),

and 2 {landslide occurring in a low hazard area).

These calegorized values were then summed and provide
the basis for one of the comparalive tests of

each models predictive ability
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Figure 12. Cumulative percent change in the number of correctly and incorrectly predicted
landslides for: (1) increasing effective cohesions (¢’ = kN/m?) input to the
SHALSTAB model; and, (2) increasing gradient-threshold values (S = %) input to
the SMORPH model. This graph permits visual comparison of the relative
sensitivities of the models when the value of input variables is changed.
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Figure 13. Graph shows that as cohesion Increases

more of the landbase becomes stable, until at cohesions

of sight or greater, all ground becames stable. The number
assaociated with each ling Is the coheslon when phi is set

to 33 degrees. The dotied line Is where the coheslon is

set to zero and the phi Is set to 45 degrees. This graph
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